741 Classic 8-bit era Programmable Sound Generator AY-3-8913

741 : Classic 8-bit era Programmable Sound Generator AY-3-8913

Design render
  • Author: ReJ aka Renaldas Zioma
  • Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG) chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910 or its analog YM2149.
  • GitHub repository
  • Clock: 2000000 Hz

How it works

This Verilog implementation is a replica of the classical AY-3-8913 programmable sound generator. With roughly a 1500 logic gates this design fits on a single tile of the TinyTapeout.

The goals of this project

  1. closely replicate the behavior and eventually the complete design of the original AY-3-891x with builtin DACs
  2. provide a readable and well documented code for educational and hardware preservation purposes
  3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and validation against the original chip behavior.

Chip technical capabilities

  • 3 square wave tone generators
  • A single white noise generator
  • A single envelope generator able to produce 10 different shapes
  • Chip is capable to produce a range of waves from a 30 Hz to 125 kHz, defined by 12-bit registers.
  • 16 different volume levels

Registers The behavior of the AY-3-891x is defined by 14 registers.

Register Bits used Function Description
0 xxxxxxxx Channel A Tone 8-bit fine frequency
1 ....xxxx ---//--- 4-bit coarse frequency
2 xxxxxxxx Channel B Tone 8-bit fine frequency
3 ....xxxx ---//--- 4-bit coarse frequency
4 xxxxxxxx Channel C Tone 8-bit fine frequency
5 ....xxxx ---//--- 4-bit coarse frequency
6 ...xxxxx Noise 5-bit noise frequency
7 ..CBACBA Mixer Tone and/or Noise per channel
8 ...xxxxx Channel A Volume Envelope enable or 4-bit amplitude
9 ...xxxxx Channel B Volume Envelope enable or 4-bit amplitude
10 ...xxxxx Channel C Volume Envelope enable or 4-bit amplitude
11 xxxxxxxx Envelope 8-bit fine frequency
12 xxxxxxxx ---//--- 8-bit coarse frequency
13 ....xxxx Envelope Shape 4-bit shape control

Square wave tone generators Square waves are produced by counting down the 12-bit counters. Counter counts up from 0. Once the corresponsding register value is reached, counter is reset and the output bit of the channel is flipped producing square waves.

Noise generator Noise is produced with 17-bit Linear-feedback Shift Register (LFSR) that flips the output bit pseudo randomly. The shift rate of the LFSR register is controller by the 5-bit counter.

Envelope The envelope shape is controlled with 4-bit register, but can take only 10 distinct patterns. The speed of the envelope is controlled with 16-bit counter. Only a single envelope is produced that can be shared by any combination of the channels.

Volume Each of the three AY-3-891x channels have dedicated DAC that converts 16 levels of volume to analog output. Volume levels are 3 dB apart in AY-3-891x.

Historical use of the AY-3-891x

The AY-3-891x family of programmable sound generators was introduced by General Instrument in 1978. Soon Yamaha Corporation licensed and released a very similar chip under YM2149 name.

Both variants of the AY-3-891x and YM2149 were broadly used in home computers, game consoles and arcade machines in the early 80ies.

The AY-3-891x chip family competed with the similar Texas Instruments SN76489.

The original pinout of the AY-3-8913

The AY-3-8913 was a 24-pin package release of the AY-3-8910 with a number of internal pins left simply unconnected. The goal of AY-3-8913 was to reduce complexity for the designer and reduce the foot print on the PCB. Otherwise the functionality of the chip is identical to AY-3-8910 and AY-3-8912.

           ,--._.--.
    GND ---|1    24|<-- /cs*
   BDIR -->|2    23|<--  a8*
    BC1 -->|3    22|<-- /a9*
    DA7 <->|4    21|<-- /RESET
    DA6 <->|5    20|<-- CLOCK
    DA5 <->|6    19|--- GND
    DA4 <->|7    18|--> CHANNEL C OUT
    DA3 <->|8    17|--> CHANNEL A OUT
    DA2 <->|9    16|    not connected
    DA1 <->|10   15|--> CHANNEL B OUT
    DA0 <->|11   14|<-- test*
  test* <--|12   13|<-- VCC
           `-------'
    * -- omitted from this Verilog implementation

Difference from the original hardware

This Verilog implementation is a completely digital and synchronous design that differs from the original AY-3-8913 design which incorporated internal DACs and analog outputs.

Audio signal output While the original chip had no summation The module provides two alternative outputs for the generated audio signal:

  1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
  2. pseudo analog output through Pulse Width Modulation (PWM)

Master output channel In contrast to the original chip which had only separate channel outputs, this implementation also provides an optional summation of the channels into a single master output.

No DC offset This implementation produces output 0/1 waveforms without DC offset.

No /A8, A9 and /CS pins The combination of /A8, A9 and /CS pins orginially were intended to select a specific sound chip out the larger array of devices connected to the same bus. In this implementation this mechanism is omitted for simplicity, /A8, A9 and /CS are considered to be tied low and chip behaves as always enabled.

Synchronous reset and single phase clock The original design employed 2 phases of the clock and asynchronous reset mechanism for operation of the registers.

To make it easier to synthesize and test on FPGAs this implementation uses single clock phase and synchronous reset for registers.

The reverse engineered AY-3-891x

This implementation would not be possible without the reverse engineered schematics and analysis based on decapped AY-3-8910 and AY-3-8914 chips.

Explain how your project works

How to test

Summary of commands to communicate with the chip

The AY-3-8913 is programmed by updating its internal registers via the data bus. Below is a short summary of the communication protocol of AY-3-891x. Please consult AY-3-891x Technical Manual for more information.

BDIR BC1 Bus state description
0 0 Bus is inactive
0 1 (Not implemented)
1 0 Write bus value to the previously latched register #
1 1 Latch bus value as the destination register #

Latch register address First, put the destination register adress on the bus of the chip and latch it by pulling both BDIR and BC1 pins high.

Write data to register Put the desired value on the bus of the chip. Pull BC1 pin low while keeping BDIR pin high to write the value of the bus to the latched register address.

Inactivate bus by pulling both BDIR and BC1 pins low.

Register Format Description Parameters
0,2,4 ffffffff A/B/C tone period f - low bits
1,3,5 0000FFFF ---//--- F - high bits
6 000fffff Noise period f - noise period
7 00CBAcba Noise / tone per channel CBA - noise off,
cba - tone off
8,9,10 000Evvvv A/B/C volume E - envelope on,
v - volume level
11 ffffffff Envelope period f - low bits
12 FFFFFFFF ---//--- F - high bits
13 0000caAh Envelope Shape c - continue, a - attack, A - alternate, h - hold

Note frequency

Use the following formula to calculate the 12-bit period value for a particular note:

$ tone period_{cycles} = clock_{frequency} / (16_{cycles} * note_{frequency}) $

For example 12-bit period that plays 440 Hz note on a chip clocked at 2 MHz would be:

$ tone period_{cycles} = 2000000 Hz / (16_{cycles} * 440 Hz) = 284 = 11C_{hex} $

An example to play a note at a maximum volume

BDIR BC1 DA7..DA0 Explanation
1 1 xxxx0000 Latch tone A coarse register address $0 = 0000_{bin}$
1 0 xxxx0001 Write high 4-bits of the 440 Hz note $1 = 0001_{bin}$
1 1 xxxx0001 Latch tone A fine register address $1_{dec} = 0001_{bin}$
1 0 00011100 Write low 8-bits of the note $1C_{hex} = 00011100_{bin}$
1 1 xxxx1000 Latch channel A volume register address $8 = 1000_{bin}$
1 0 xxx01111 Write maximum volume level $15_{dec} = 1111_{bin}$ with the envelope disabled
Timing diagram

CLK   ____      ____      ____      ____      ____      ____         
   __/    `____/    `____/    `____/    `____/    `____/    `____ ...
    |         |         |         |         |         |
    |         |         |         |         |         |

BDIR ______    ______    ______    ______    ______    ______
   _/      `__/      `__/      `__/      `__/      `__/      `__

BC1  _______             _______            ________
   _/       `___________/       `__________/        `___________

DA7..DA0_____  ________  ________  ________  ________  ________
   _/  0000  `/xxxx0001`/  0001  `/00011100`/  1000  `/xxx01111`
      latch     write     latch      write    latch     

Externally configurable clock divider

SEL1 SEL0 Description Clock frequency
0 0 Standard mode, clock divided by 8 1.7 .. 2.0 MHz
1 1 -----//----- 1.7 .. 2.0 MHz
0 1 New mode for TT05, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz
SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
0 0 $clock_{frequency} / (16_{cycles} * note_{frequency})$
1 1 -----//-----
0 1 $clock_{frequency} / (2_{cycles} * note_{frequency})$
1 0 $clock_{frequency} / (128_{cycles} * note_{frequency})$

External hardware

The data bus of the AY-3-8913 chip has to be connected to microcontroller and receive a regular stream of commands. The AY-3-8913 produces audio output and has to be connected to a speaker. There are several ways how the overall schematics can be established.

8-bit parallel output via DAC One option is to connect off the shelf data parallel Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins and route the resulting analog audio to piezo speaker or amplifier.

uController             AY-3-8913  
,---------.            ,---._.---. 
|         |    2 Mhz ->|CLK  SEL0|<-- 0
|    GPIOx|----------->|BC1  SEL1|<-- 0
|    GPIOx|----------->|BDI      |         ,----------.
|    GPIOx|----------->|DA0  OUT0|-------->|LSB       |
|    GPIOx|----------->|DA1  OUT1|-------->|          |  
|    GPIOx|----------->|DA2  OUT2|-------->|   pDAC   |  Headphones
|    GPIOx|----------->|DA3  OUT3|-------->|    or    |      or    
|    GPIOx|----------->|DA4  OUT4|-------->| RESISTOR |    Buzzer    
|    GPIOx|----------->|DA5  OUT5|-------->|  ladder  |         /|
|    GPIOx|----------->|DA6  OUT6|-------->|          |     .--/ |
|    GPIOx|----------->|DA7  OUT7|-------->|MSB       |-----|    |
`---------'            `---------'         `----------'     `--` |
                                                             |  `|
                                                             |
                                                        GND ---  

AUDIO OUT through RC filter Another option is to use the Pulse Width Modulated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based integrator:

uController             AY-3-8913
,---------.            ,---._.---. 
|         |    2 Mhz ->|CLK  SEL0|<-- 0
|    GPIOx|----------->|BC1  SEL1|<-- 0
|    GPIOx|----------->|BDIR     |
|    GPIOx|----------->|DA0      |
|    GPIOx|----------->|DA1      |
|    GPIOx|----------->|DA2      |          C1
|    GPIOx|----------->|DA3      |     ,----||----.
|    GPIOx|----------->|DA4      |     |          | 
|    GPIOx|----------->|DA5      |     |  Op-amp  |        Speaker     
|    GPIOx|----------->|DA6 AUDIO|     |   |X     |            /|
|    GPIOx|----------->|DA7  OUT |-----+---|-X    |   C2   .--/ |
`---------'            `---------'         |  }---+---||---|    |
                                        ,--|+/             `--` |
                                        |  |/               |  `|
                                        |                   |
                                   GND ---             GND ---  

Separate channels through the Op-amp The third option is to externally combine 4 channels with the Operational Amplifier and low-pass filter:

uController             AY-3-8913
,---------.            ,---._.---. 
|         |    2 Mhz ->|CLK  SEL0|<-- 0
|    GPIOx|----------->|BC1  SEL1|<-- 0
|    GPIOx|----------->|BDIR     |
|    GPIOx|----------->|DA0      |
|    GPIOx|----------->|DA1      |
|    GPIOx|----------->|DA2      |           C1
|    GPIOx|----------->|DA3      |      ,----||----.
|    GPIOx|----------->|DA4      |      |          | 
|    GPIOx|----------->|DA5     A|---.  |  Op-amp  |        Speaker
|    GPIOx|----------->|DA6     B|---+  |   |X     |            /|
|    GPIOx|----------->|DA7     C|---+--+---|-X    |   C2   .--/ |
`---------'            `---------'          |  }---+---||---|    |
                                         ,--|+/             `--` |
                                         |  |/               |  `|
                                         |                   |
                                    GND ---             GND ---  

IO

#InputOutputBidirectional
0DA0 - multiplexed data/address bus LSBaudio out (PWM)(in) **BC1** bus control
1DA1 - multiplexed data/address busdigita audio LSB(in) **BDIR** bus direction
2DA2 - multiplexed data/address busdigita audio (in) **SEL0** clock divider
3DA3 - multiplexed data/address busdigita audio (in) **SEL1** clock divider
4DA4 - multiplexed data/address busdigita audio (out) channel A (PWM)
5DA5 - multiplexed data/address busdigita audio (out) channel B (PWM)
6DA6 - multiplexed data/address busdigita audio (out) channel C (PWM)
7DA7 - multiplexed data/address bus MSBdigita audio MSB(out) AUDIO OUT master (PWM)

Chip location

Controller Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Analog Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Analog Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux tt_um_chip_rom (Chip ROM) tt_um_factory_test (TinyTapeout Factory Test) tt_um_led_matrix_ayla_lin (32x8 LED Matrix Animation) tt_um_urish_charge_pump (Dickson Charge Pump) tt_um_rebeccargb_tt09ball_screensaver (TT09Ball VGA Screensaver) tt_um_urish_simon (Simon Says memory game) tt_um_rebeccargb_tt09ball_gdsart (TT09Ball GDS Art) tt_um_rebeccargb_vga_pride (VGA Pride) tt_um_levenshtein (Fuzzy Search Engine) tt_um_rebeccargb_colorbars (Color Bars) tt_um_jamesrosssharp_1bitam (1bit_am_sdr) tt_um_mattvenn_double_inverter (Analog double inverter) tt_um_htfab_hybrid (Telephone hybrid) tt_um_mattvenn_analog_ring_osc (Ring Oscillators) tt_um_brandonramos_opamp_ladder (2-bit Flash ADC) tt_um_wokwi_411783629732984833 (BINCounterAndGates) tt_um_rebeccargb_hardware_utf8 (Hardware UTF Encoder/Decoder) tt_um_patdeegan_anamux (Analog MUX module) tt_um_MichaelBell_hs_mul (8b10b decoder and multiplier) tt_um_rebeccargb_styler (Styler) tt_um_rebeccargb_vga_timing_experiments (VGA Timing Experiments) tt_um_rebeccargb_universal_decoder (Universal Binary to Segment Decoder) tt_um_rebeccargb_intercal_alu (INTERCAL ALU) tt_um_toivoh_pio_ram_emu_example (pio-ram-emulator example: Julia fractal) tt_um_2048_vga_game (2048 sliding tile puzzle game (VGA)) tt_um_tobimckellar_top (Simple PWM Module) tt_um_JesusMinguillon_freqSweep (freqSweep) tt_um_led_cipher (LED Bitserial Cipher) tt_um_wokwi_412367067047460865 (achasen workshop validation) tt_um_wokwi_412635532198550529 (tt09-pettit-wokproc-trainer) tt_um_my_elevator (Elevator Design) tt_um_wokwi_413387014781302785 (L display) tt_um_wokwi_413387348132056065 (S-R latch) tt_um_wokwi_413387032609197057 (Gabe's Big AND) tt_um_wokwi_413387015959903233 (Secret Code) tt_um_wokwi_413387076188030977 (joes-first-tiny-tapeout) tt_um_wokwi_413387481972305921 (Abey's 1st Chip Design) tt_um_wokwi_413391266378724353 (patrick's project) tt_um_wokwi_413387120998931457 (Shadoff Test) tt_um_wokwi_413387462882977793 (Tiny Tapeout Take 2) tt_um_wokwi_413387224567846913 (Speller) tt_um_wokwi_413387065339458561 (APA102 to WS2812 Translator) tt_um_wokwi_413387064715554817 (RAYS FIRST TAPEOUT rev 2) tt_um_wokwi_413387352465821697 (6 Bit shift register) tt_um_wokwi_413385294512575489 (Duffy) tt_um_wokwi_413387190167208961 (Will It NAND?) tt_um_wokwi_413386988538584065 (Bad Logic) tt_um_wokwi_413387186248679425 (Drew's First Wokwi Design) tt_um_wokwi_413387152803294209 (Pseudo Random Generator Using 2 Ring Oscillators) tt_um_wokwi_413387214966034433 (JonsFirstTapeout) tt_um_wokwi_413386991502909441 (SPI Logic Analyzer with Charlieplexed Display) tt_um_wokwi_413387122850717697 (And Gates that don't do much) tt_um_wokwi_413387009513254913 (SimplePattern) tt_um_wokwi_413387093939376129 (sphereinabox hello) tt_um_wokwi_413386973689694209 (Input Counter) tt_um_rburt16_opamp_3stage (OpAmp 3stage) tt_um_alf19185_ALU (4 bit ALU ) tt_um_rtfb_collatz (Collatz conjecture brute-forcer) tt_um_senolgulgonul (Senol Gulgonul tt09) tt_um_tnt_rom_test (TT09 SKU130 ROM Test) tt_um_tnt_rom_nolvt_test (TT09 SKY130 ROM Test (no LVT variant)) tt_um_Esteban_Oman_Mendoza_maze_2024_top (Space Detective Maze Explorer) tt_um_sebastienparadis_hamming_top (Hamming Code (7,4)) tt_um_couchand_analog_switch (Analog Switch) tt_um_prefix8 (tiny-tapeout-8bit-GPTPrefixCircuit) tt_um_lif_tk (LIF on a Ring Topology) tt_um_asheldon44_dsm_decimation_filter (Delta-Sigma ADC Decimation Filter) tt_um_juarez_jimenez (an lfsr with synaptic neurons (excitatory or inhibitatory)) tt_um_lif_clarencechan28 (Perceptron) tt_um_uart_mvm (Matmul System) tt_um_lif_sfiguerr (Adaptive Leaky Integrate and Fire Neuron) tt_um_algofoogle_tt09_ring_osc (Verilog ring oscillator) tt_um_pid_controller (PID Controller) tt_um_frequency_counter (Frequency Counter SSD1306 OLED) tt_um_delta_liafn (Delta RNN and Leaky Integrate-and-Fire Nueron Circuit) tt_um_devinatkin_basys3_uart (Basys 3 Over UART Link) tt_um_array_mult_structural_GnahsLliw (Array Multiplier) tt_um_array_mult_structural_sarahherrera (Array Multiplier) tt_um_a3_array_multiplier (Array multiplier) tt_um_a_4_array_multiplier (Array Multiplier) tt_um_secA_group5_array_multiplier (ECE-2204 4x4 Array Multiplier) tt_um_A_6_array_multiplier (ECE2204 4x4 Array Multiplier) tt_um_a_0_array_multiplier (Array Multiplier) tt_um_array_mult_structural (ece2204 project for tapeout) tt_um_m4rthaswur1d (4x4 array multiplier) tt_um_arry_mult_structural (4-bit-array-multiplier) tt_um_LabA_Group11 (Array_Multiplier) tt_um_pwm_top (Generador PWM multiproposito con frecuencia y ciclo de trabajo modulable) tt_um_lfsr_stevej (Linear Feedback Shift Register) tt_um_jamesrosssharp_tiny1bitam (Tiny 1-bit AM Radio) tt_um_instrumented_ring_oscillator (instrumented_ring_oscillator) tt_um_lif1 (STDP Circuit) tt_um_wokwi_413871526879619073 (4-1 mux) tt_um_wokwi_413872016164217857 (2bit adder) tt_um_alif (3 Neuron ALIF) tt_um_tiny_ternary_tapeout (T3 (Tiny Ternary Tapeout)) tt_um_snn_with_delays_paolaunisa (ChatGPT-generated Spiking Neural Network with Delays) tt_um_kmakise_sram (OpenRAM SRAM macro) tt_um_secA_11_nyancar_alanz23 (ece2204_4x4_mult) tt_um_arandomdev_fir_engine_top (FIREngine) tt_um_b_0_array_multiplier (Lab B Group 1 Array Multiplier) tt_um_b_2_array_multiplier (Array Multiplier) tt_um_b_6_array_multiplier (4x4 Array Multiplier) tt_um_multiplier (4x4 Array Multiplier) tt_um_b_12_array_multiplier (ECE2204 4x4 Array Multiplier) tt_um_wokwi_413686101237123073 (comparator) tt_um_B_14_array_multiplier (4x4 Array Multiplier) tt_um_secB_15_array_multiplier (Array Multiplier) tt_um_array_mult_joe_leighthardt (4 bit array multiplier) tt_um_carryskip_adder8 (8-bit carry-skip) tt_um_riscv_mini (RISC-V Mini) tt_um_CLA8 (8-bit Carry Look-Ahead Adder) tt_um_hybrid_adder (Hybrid_Adder_8bit) tt_um_C_1_4bit_multiplier (my_4bit_multiplier) tt_um_c_2_array_mult (4-bit-multiplier) tt_um_c7_array_mult (4-bit Multiplier) tt_um_4x4multiplier (4x4multiplier) tt_um_c13_array_mult (4-bit Multiplier) tt_um_arrayMultFajrSahana (4x4 Multiplier) tt_um_wokwi_413916532008126465 (tt09 kathyhtt ) tt_um_wokwi_413919522908184577 (TINY TAPE OUT) tt_um_wokwi_413923260134423553 (TinyTapeout1) tt_um_wokwi_413919531169918977 (FB GDS) tt_um_wokwi_413919794360480769 (Metastable Chip) tt_um_four_bit_multiplier_nasan016_npham2003 (4-bit Multiplier) tt_um_wokwi_413919484652961793 (halfadder+not) tt_um_wokwi_413918279810604033 (MuxLED) tt_um_wokwi_413919458626244609 (Jacks First Project) tt_um_wokwi_413919492911554561 (Half adder) tt_um_wokwi_413919972072132609 (Andrew Vo - Repository) tt_um_wokwi_413919970097662977 (Dipankar's first Wowki design) tt_um_wokwi_413923245817165825 (Hamad's design) tt_um_wokwi_413919502227108865 (Encoder) tt_um_wokwi_413923188546028545 (GDS) tt_um_wokwi_413920370058172417 (2 Bit Times 2 Bit Plus 4 Bit MAD and 5 Bit Binary to 7 Segment Display) tt_um_wokwi_413918244906651649 (Not Good BCD Decoder) tt_um_wokwi_413919507057902593 (tinytapeoutkr) tt_um_wokwi_413920096493033473 (My First ASIC) tt_um_wokwi_413921849611724801 (Yared Fente's Tiny Tapeout) tt_um_wokwi_413918243645213697 (Yohan Tiny Tapeout Project) tt_um_wokwi_413919889872144385 (Tiny Tapeout) tt_um_4x4_array_multiplier_NuKoP (4 x 4 array multiplier NuKoP) tt_um_wokwi_413920489444856833 (Samson's Tiny Tapout Project) tt_um_wokwi_413923702485727233 (tinytapeout) tt_um_wokwi_413919752282163201 (Trubick - Tiny Tapeout Logic Gate) tt_um_wokwi_413925554587918337 (D_flipflop_hold_test) tt_um_wokwi_413919500942601217 (Bit Counter) tt_um_wokwi_413919666547418113 (Full bit adder) tt_um_wokwi_413920825278643201 (Encoder) tt_um_wokwi_413919543420439553 (Big J's Big Circuit) tt_um_wokwi_413919927206703105 (AndLogicPass) tt_um_wokwi_413920640800531457 (Half Adder) tt_um_wokwi_413917903548951553 (Jordan) tt_um_wokwi_413919465666386945 (OR gate) tt_um_wokwi_413920442846133249 (TinyTapeOut) tt_um_wokwi_413920033033205761 (Tiny Tapeout-Huerta) tt_um_wokwi_413923202390383617 (Light LED) tt_um_wokwi_413923150973445121 (Zero to Nine Display Count) tt_um_wokwi_413919565287453697 (APTT) tt_um_wokwi_413919777312727041 (Tahiti) tt_um_wokwi_413920089540972545 (Secret Initial) tt_um_wokwi_413919675346023425 (GJAA Design) tt_um_wokwi_413919847886104577 (Logic Gates) tt_um_wokwi_413921288682183681 (My First TinyTapeout) tt_um_wokwi_413919524873217025 (1st) tt_um_wokwi_413919454053401601 (JCB First WOKWI Design) tt_um_wokwi_413923045171059713 (Logic Gates 7-Segment Display) tt_um_wokwi_413919767806333953 (BadeTP) tt_um_wokwi_413919428470231041 (Lynn's TinyTapeout Design) tt_um_wokwi_413929752291913729 (project) tt_um_wokwi_413923521595851777 (Nathan's chip) tt_um_wokwi_413920340558577665 (Light) tt_um_uart_mvm_sys (Matmul System) tt_um_wokwi_413407859783959553 (Redco) tt_um_wokwi_413849515516143617 (Two PFD) tt_um_wokwi_413919454138338305 (Letter H) tt_um_wokwi_413960876763056129 (Binary to 7 Segment Display Decoder) tt_um_MichaelBell_hd_8b10b (8b10b decoder and multiplier) tt_um_program_counter_top_level (Test Design 1) tt_um_murmann_group (Decimation Filter for Incremental and Regular Delta-Sigma Modulators) tt_um_adder_accumulator_sathworld (adder-accumulator) tt_um_control_block (8-Bit CPU) tt_um_LFSR_Encrypt (LFSR Encrypter) tt_um_cdc_test (SkyKing Demo) tt_um_two_lif_stdp (Two LIF Neurons with STDP Learning) tt_um_underserved (ITS-RISCV) tt_um_mbkmicdec_ringosc (Time_Domain_Comparator_ITS) tt_um_znah_vga_ca (znah_vga_ca) tt_um_tim2305_adc_dac (tt_um_tim2305_adc_dac) tt_um_mikegoelzer_7segmentbyte (7-Segment Byte Display) tt_um_idann (Forward Pass Network for Simple ANN) tt_um_micro_tiles_container (Micro tile container) tt_um__kwr_lfsr__top (Multi-LFSR) tt_um_wokwi_413923639862662145 (xor gate with registered output ) tt_um_carryskip_adder9 (carry skip adder) tt_um_mroblesh (Frequency Encoder and Decoder) tt_um_wokwi_411379488132926465 (Semana UCU Verilog) tt_um_rejunity_atari2600 (Atari 2600) tt_um_rejunity_z80 (Zilog Z80) tt_um_b_8_array_multiplier (4 by 4 Array Multiplier) tt_um_C8_array_mult (4-bit multiplier) tt_um_tt09_array_multiplier (Array Multiplier) tt_um_array_mult_structural_sectionD_group3 (4-bit Array Multiplier) tt_um_d_4_array_multiplier (ECE-UY 2204 4x4 Array Multiplier) tt_um_couchand_cora16 (CORA-16) tt_um_secd_8_array_mult (array_multiplier) tt_um_kashmaster_carryskip (8-bit-CARRY_SKIP) tt_um_tiny_ternary_tapeout_csa (T3 (Tiny Ternary Tapeout) CSA ) tt_um_array_secD7 (Tiny Tapeout Group 7 Lab D) tt_um_chip4lyfe (Leaky Integrate Fire Neuron) tt_um_ronikant_jeremykam_tinyregisters (Tiny Registers) tt_um_c_4_4b_mult (4bit multiplier) tt_um_section_d_group_fifteen_array_mult_structural (ECE2204MultiplierProject) tt_um_VanceWiberg_top (Team 17's 8 bit DAC) tt_um_claudiotalarico_counter (4-bit up/down binary counter) tt_um_wokwi_413471588783557633 (TT Test) tt_um_gmejiamtz (Configurable Logic Block) tt_um_I2C (I2C and SPI) tt_um_perceptron_mtchun (Perceptron Neuron) tt_um_histogramming (Histogramming) tt_um_SarpHS_array_mult (4-bit Multiplier) tt_um_gfcwfzkm_scope_bfh_mht1_3 (Basic Oszilloscope and Signal Generator) tt_um_MichaelBell_rle_vga (RLE Video Player) tt_um_ece298a_8_bit_cpu_top (8-Bit CPU) tt_um_Coline3003_top (15 channels emission counter) tt_um_wokwi_414107691971107841 (Steven's Wokwi Test) tt_um_dlmiles_dffram32x8_2r1w (Tiny RAM DFF 2r1w) tt_um_urish_sic1 (SIC-1 8-bit SUBLEQ Single Instruction Computer) tt_um_Coline3003_spect_top (Spectrogram extractor, 2 channels) tt_um_c1_array_mult_structural (Lab C 4x4 Mult-Array) tt_um_CarrySelect8bit (carry_select) tt_um_koggestone_adder8 (test_friday2) tt_um_Rapoport (Perceptron) tt_um_cellular_alchemist (Hopfield Network with Izhikevich-type RS and FS Neurons) tt_um_wokwi_414120207283716097 (fulladder) tt_um_wokwi_414120357164073985 (2-Bit-Adder) tt_um_wokwi_414121442515858433 (Mini-Adder and Clock Divider) tt_um_wokwi_414121715329142785 (Sigma-Delta ADC) tt_um_wokwi_414120407679244289 (3bitFullAdder) tt_um_wokwi_414121532514097153 (TinyTapeout workshop - Wokwi 8 Bit LFSR) tt_um_wokwi_414120518107969537 (4 bit adder) tt_um_wokwi_414120696731857921 (Broken Two Bit Adder) tt_um_wokwi_414120263584922625 (8 bit LFSR) tt_um_wokwi_414121421011660801 (2_bit_7seg) tt_um_wokwi_414120404427608065 (7-seg display checker) tt_um_wokwi_414120472316644353 (tt09-4bit-adder-dhags) tt_um_wokwi_414120591467404289 (XorTree) tt_um_wokwi_414124872671308801 (Morse Code for J and R) tt_um_wokwi_414125777368065025 (Tiny_Tapeout_Adder!) tt_um_wokwi_414120492890759169 (Manchester Encoder) tt_um_wokwi_414120201832165377 (Odd or even) tt_um_wokwi_414125058137148417 (Adbe_Project) tt_um_wokwi_414120372939908097 (Full Adder) tt_um_wokwi_414120379026893825 (TT-Farhad) tt_um_wokwi_414120157271867393 (Four Bit Adder) tt_um_wokwi_414124843472659457 (2 bit adder) tt_um_wokwi_414120239772801025 (AND and NOT gate testing) tt_um_wokwi_414124597390729217 (Kanoa's first Wokwi deseign Tinytapeout 2024 Nonsense) tt_um_wokwi_414120415300298753 (add it) tt_um_wokwi_414117926152578049 (one) tt_um_wokwi_414120459831246849 (Full Adder) tt_um_wokwi_414117854728812545 (four flip flops) tt_um_wokwi_414120320168203265 (Tiny Tapeout 9 Template) tt_um_wokwi_414120583702696961 (half adder) tt_um_tinysynth (Tinysynth) tt_um_wokwi_414120349028170753 (LCA’s first Wokwi design) tt_um_wokwi_414120435997105153 (7-bit arbiter) tt_um_wokwi_414120378768943105 (Counter) tt_um_wokwi_414120800422397953 (Full adder Design) tt_um_wokwi_414118423095874561 (Vincent's First Design) tt_um_wokwi_414120248222232577 (A Tale of Two NCOs) tt_um_a1k0n_nyancat (VGA Nyan Cat) tt_um_tommythorn_workshop (Workshop demo) tt_um_lrc_stevej (LRC - Longitudinal Redundancy Check generator) tt_um_wokwi_414120202583995393 (print) tt_um_wokwi_414120500233937921 (hello) tt_um_wokwi_414120569974735873 (Full Adder) tt_um_wokwi_414120295047458817 (NAND-Equ) tt_um_wokwi_414120388391730177 (adder-tt09) tt_um_wokwi_414120414884012033 (Ripple counter) tt_um_wokwi_414120509472942081 (rand) tt_um_wokwi_414121555407659009 (rhTinyTapeout) tt_um_wokwi_414120432405727233 (chip) tt_um_wokwi_414122362169493505 (NAND Flip-Flop) tt_um_shifter (Shifter) tt_um_wokwi_414124428088683521 (seven) tt_um_wokwi_414120513895838721 (gatesoup) tt_um_wokwi_414120303651028993 (Tiny Tapeout 9 Template Version 1 Tata Luka) tt_um_wokwi_414122607025630209 (UART TX) tt_um_wokwi_414120368966850561 (my First WokWi Design) tt_um_wokwi_414120299211357185 (Tiny Tapeout 9) tt_um_schoeberl_test (tinydsp-lol) tt_um_anislam (Leaky integrate and fire spiking neural network) tt_um_wokwi_414126546375915521 (2-bit Full Adder) tt_um_wokwi_414174625969437697 (Name Speller) tt_um_wokwi_414127944900611073 (gta6) tt_um_ericsmi_mips (mips.sv) tt_um_systolicLif (Basic model for Systollic array implementation of LIF) tt_um_algofoogle_tt09_ring_osc2 (Verilog ring oscillator V2) tt_um_dff_mem (dff_mem) tt_um_nomuwill (16 Bit Izhikevich Neuron) tt_um_digital_clock_example (7-Segment Digital Desk Clock) tt_um_udxs (Basic Perceptron + ReLU) tt_um_matrix_mult (Basic Matrix-Vector Multiplication) tt_um_db_MAC (8 bit MAC Unit) tt_um_anas_7193 (Programmable PWM Generator) tt_um_flyingfish800 (Verilog test project) tt_um_project (Basic LIF Neuron) tt_um_lifn (Integrate-and-Fire Neuron Circuit) tt_um_wokwi_413921836641882113 (ovl abc chip) tt_um_mickey_pll (pll) tt_um_rejunity_e2m0_x_i8_matmul (E2M0 x INT8 Systolic Array) tt_um_michaelmcculloch_alu (Michaels Tiny Tapeout ALU) tt_um_dog_BILBO (8-bit CBILBO) tt_um_stochastic_integrator_tt9_CL123abc (Stochastic Integrator) tt_um_vga_clock (VGA clock) tt_um_z2a_rgb_mixer (RGB Mixer demo) tt_um_samkho_two_channel_square_wave_generator (TwoChannelSquareWaveGenerator) tt_um_mattvenn_r2r_dac_3v3 (Analog 8 bit 3.3v R2R DAC) tt_um_b_10_array_multiplier (Lab B Group 10 Array Multiplier) tt_um_urish_giant_ringosc (Giant Ring Oscillator (3853 inverters)) tt_um_htfab_caterpillar (Simon's Caterpillar) tt_um_anders_tt_6502 (tt6502) tt_um_wokwi_414123795172381697 (TinySnake) tt_um_oscillating_bones (Oscillating Bones) tt_um_r2r_dac (4-bit R2R DAC) tt_um_tinytinfoil_saradc_dac (Noise test for a CDAC capacitor chain) tt_um_purdue_socet_uart (SoCET UART) tt_um_rejunity_sn76489 (Classic 8-bit era Programmable Sound Generator SN76489) tt_um_rejunity_ay8913 (Classic 8-bit era Programmable Sound Generator AY-3-8913) tt_um_tommythorn_cgates (Cgates) tt_um_09eksdee (eksdee) tt_um_13hihi31_tdc (Time to Digital Converter) tt_um_rejunity_decoder (ternary, E1M0, E2M0 decoders) tt_um_analog_example (Digital OTA) tt_um_kailinsley (Dynamic Threshold Leaky Integrate-and-Fire) tt_um_C6_array_multiplier (tt09-C6-array-multiplier) tt_um_rejunity_vga_test01 (VGA Drop (audio/visual demo)) tt_um_wallento_4bit_toycpu (4-Bit Toy CPU) tt_um_warp (Warp) tt_um_algofoogle_tt09_ring_osc3 (Verilog ring oscillator V3) tt_um_kev_ma_matmult222 (2-bit 2x2 Matrix Multiplier) tt_um_wokwi_414041465275103233 (SK Test Workshop) tt_um_rejunity_vga_logo (VGA Tiny Logo (1 tile)) tt_um_toivoh_demo (Sequential Shadows [TT08 demo competition]) tt_um_liaf (A simple leaky integrate and fire neuron) tt_um_wokwi_413879612498222081 (Clocked Display) tt_um_wokwi_413919625901452289 (Encoder) tt_um_wokwi_413919442353385473 (Encoder) tt_um_wokwi_413919540668975105 (First Tapeout Chip - OCR) tt_um_wokwi_413918022277139457 (Half Adder) tt_um_wokwi_414120435095328769 (Kai's Death Adder) tt_um_wokwi_413919775044656129 (Kevin Project) tt_um_lif_network_MR (Leaky Neuron Network) tt_um_lsnn_hschweig (Neuromorphic Hardware for SNN LSTM) tt_um_wokwi_413387065963362305 (Project) tt_um_Nishanth_RISCV (RISCV Processor Design) tt_um_wokwi_413883347321632769 (Test_project) tt_um_KoushikCSN_RISCV (RISCV Processor Design) tt_um_wokwi_414120868401584129 (Tian TT9) tt_um_wokwi_414120391864616961 (Tiniest of tapeouts) tt_um_wokwi_414120458938907649 (Who knows what's happening Tiny Tapeout) tt_um_wokwi_413919833599252481 (YoshiTP) tt_um_wokwi_414118269335820289 (chip_fab) tt_um_wokwi_414121281003682817 (dummy) tt_um_wokwi_414124471705253889 (sarah's first chip) tt_um_ccu_goatgate (tiny cipher 4 bit key) tt_um_wokwi_414120526876163073 (2 input multiplexor) tt_um_lif_ZB (Tutorial: Simple LIF Neuron) Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available