The stochastic integrator uses Euler's definition of integration to make it happen in the stochastic domain. This integrator follows unipolar probability.
REFERENCES USED
General Stochastic Integrator Design:
[1] S. Liu and J. Han, "Hardware ODE solvers using stochastic circuits," 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2017, pp. 1-6, doi: 10.1145/3061639.3062258. keywords: {Radiation detectors;Stochastic processes;Hardware;Generators;Clocks;Energy consumption;Throughput;stochastic integrator;ordinary differential equation;stochastic computing},
LFSR Design in Stochastic Computing:
[2] Jason H. Anderson, Yuko Hara-Azumi, and Shigeru Yamashita. 2016. Effect of LFSR seeding, scrambling and feedback polynomial on stochastic computing accuracy. In Proceedings of the 2016 Conference on Design, Automation & Test in Europe (DATE '16). EDA Consortium, San Jose, CA, USA, 1550–1555. https://dl.acm.org/doi/abs/10.5555/2971808.2972171
Set ui_in[0] with a constant high and ui_in[1] with constant low to see the equations described.
ADALM2000
# | Input | Output | Bidirectional |
---|---|---|---|
0 | serial_input_1 | serial_output_seq_integrator_a | |
1 | serial_input_2 | serial_output_seq_integrator_b | |
2 | serial_output_seq_integrator_c | ||
3 | serial_output_system_integrator_a | ||
4 | serial_output_system_integrator_b | ||
5 | serial_output_test_integrator_a | ||
6 | serial_output_test_integrator_b | ||
7 | output_sn_bit_seq_integrator_c |