This AFM-based LIF neuron model implementation features:
The equition of AFM based LIF neuron model is: $ V[t+1] = AFM!\left(e^{-\frac{1}{\tau}}, V[t]-E_{rest}\right) + E_{rest} + I \ \text{if } V[t] \leq V_{th}, \text{ then } V[t+1] = E_{rest} $
The execution of this architecture consists of three phases:
None required - all the operation of this design can be done through digital I/O
# | Input | Output | Bidirectional |
---|---|---|---|
0 | ui_in[0] | uo_out[0] | uio_in[0],uio_out[0] |
1 | ui_in[1] | uo_out[1] | uio_in[1],uio_out[1] |
2 | ui_in[2] | uo_out[2] | uio_in[2],uio_out[2] |
3 | ui_in[3] | uo_out[3] | uio_in[3],uio_out[3] |
4 | ui_in[4] | uo_out[4] | uio_in[4],uio_out[4] |
5 | ui_in[5] | uo_out[5] | uio_in[5],uio_out[5] |
6 | ui_in[6] | uo_out[6] | uio_in[6],uio_out[6] |
7 | ui_in[7] | uo_out[7] | uio_in[7],uio_out[7] |