43 DPM_Unit

43 : DPM_Unit

Design render
  • Author: Sanjay Kumar M, Shylashree N, Ravish Aradhya H V, RV College Of Engineering, Neha R V, PES University
  • Description: Design and Implementation of Dynamic Power management unit
  • GitHub repository
  • Open in 3D viewer
  • Clock: 100 Hz

Credits : We gratefully acknowledge the COE in Integrated Circuits and Systems (ICAS) and Department of ECE. Our special thanks to Dr K S Geetha (Vice Principal) and, Dr. K N Subramanya (principal) for their constant support and encouragement to do TAPEOUT in Tiny Tapeout 8 .

The code provided is a SystemVerilog module that implements a Dynamic Power Management Unit (DPMU) for an SoC (System on Chip). The DPMU dynamically adjusts voltage and frequency levels based on inputs such as performance requirements, temperature, battery level, and workload. The module uses a finite state machine (FSM) to manage transitions between different power states.

Key Components

Inputs and Outputs: Inputs (ui_in): The primary input signals include performance requirements, temperature sensor data, battery level, and workload. Outputs (uo_out, uio_out): These include the power-saving indicator, voltage levels, and frequency levels for different cores and memory. I/O (uio_in, uio_out, uio_oe): Handles bidirectional signals; however, in this design, uio_in is not used, and uio_out is used for output. Internal Signals:

State Variables: state and next_state manage the FSM that controls the DPMU's behavior. Power and Frequency Controls: Registers like vcore1, vcore2, vmem, fcore1, fcore2, and fmem store the voltage and frequency settings. Finite State Machine (FSM):

States: NORMAL: Default operating mode with standard voltage and frequency levels. PERFORMANCE: High-performance mode with maximum voltage and frequency levels. POWERSAVE: Low-power mode with reduced voltage and frequency levels. THERMAL_MANAGEMENT: Mode to handle high temperature by adjusting power levels moderately. BATTERY_SAVING: Mode to conserve battery by minimizing voltage and frequency levels.

State Transitions: Transitions between states occur based on the input conditions, such as high performance request, low battery level, high temperature, or low workload. Detailed Walkthrough Input and Output Mapping:

perf_req: Mapped to the least significant bit (LSB) of ui_in, indicating whether high performance is needed. temp_sensor: 2-bit signal derived from ui_in[3:2], providing temperature data. battery_level: 2-bit signal derived from ui_in[5:4], indicating the battery's charge status. workload_core: 3-bit signal derived from ui_in[7:6], representing the workload of a core. State Logic:

On each clock cycle (clk), the FSM checks the state and evaluates transitions based on inputs. In NORMAL state, if perf_req is high, the system transitions to PERFORMANCE state. If the battery level is low, it transitions to BATTERY_SAVING state. If the temperature is high, it transitions to THERMAL_MANAGEMENT state. If the workload is low, it transitions to POWERSAVE state. PERFORMANCE state sets all voltages and frequencies to maximum. If perf_req drops, it returns to NORMAL. POWERSAVE state reduces voltages and frequencies to conserve power. If the workload increases, it returns to NORMAL. THERMAL_MANAGEMENT state adjusts power levels to moderate values to manage high temperatures. If the temperature normalizes, it returns to NORMAL. BATTERY_SAVING state minimizes voltages and frequencies to conserve battery. If the battery level increases, it returns to NORMAL.

Output Assignment: The combined voltage (vcore1, vcore2, vmem) and frequency (fcore1, fcore2, fmem) values are assigned to the uio_out and uo_out outputs. The power_save signal is also part of the output, indicating whether the system is in power-saving mode. Behavior under Reset:

When the reset (rst_n) is low (active), the system resets to the NORMAL state.

Here’s a table summarizing the expected output (uio_out, uo_out) based on the input (ui_in) and time using the provided testbench for the tt_um_dpmu module. The table provides the values for different states as the ui_in input changes over time.

Table: Testbench Expected Output

Time (ns) ui_in (Input) State uio_out (Expected Output) uo_out (Expected Output)
0 11110010 NORMAL 01010110 010_010010
10 00010010 PERFORMANCE 11111111 111_111111
30 11110010 NORMAL 01010110 010_010010
50 11110011 THERMAL_MANAGEMENT 10101011 011_011011
70 11110010 NORMAL 01010110 010_010010
90 11101010 THERMAL_MANAGEMENT 10101011 011_011011
110 11111010 BATTERY_SAVING 00000000 000_000000
130 11111110 BATTERY_SAVING 00000000 000_000000
150 11111010 BATTERY_SAVING 00000000 000_000000

Explanation of Table Columns:

Time (ns): The simulation time when the ui_in input is applied. ui_in (Input): The 8-bit input value applied to the design. State: The state of the FSM based on the ui_in input. The states are NORMAL, PERFORMANCE, THERMAL_MANAGEMENT, and BATTERY_SAVING. uio_out (Expected Output): The expected 8-bit output values for the uio_out signals. uio_out[0]: Power save mode indicator. uio_out[2:1], uio_out[4:3], uio_out[6:5]: Voltage controls. uio_out[7]: Part of fcore1[0]. uo_out (Expected Output): The expected 8-bit output values for the uo_out signals. uo_out[0:1]: Part of fcore1[2:1]. uo_out[4:2]: fcore2[2:0]. uo_out[7:5]: fmem[2:0].

Explanation of Key Points: NORMAL State: When the inputs suggest a typical operating environment (e.g., ui_in = 11110010), the design operates with default voltage and frequency levels. PERFORMANCE State: Triggered by a performance request (perf_req = 1), leading to maximum voltage and frequency levels. THERMAL_MANAGEMENT State: Triggered by high temperature (temp_sensor = 10 or 11), moderates the voltage and frequency to prevent overheating. BATTERY_SAVING State: Triggered by low battery level (battery_level = 00 or 01), minimizing power consumption by reducing voltage and frequency to the lowest levels.

Testbench Operation: The testbench applies different ui_in values at specific simulation times. At each time step, it captures the output values (uio_out and uo_out) and compares them with the expected values as per the design's FSM logic. The $monitor statement continuously logs the input and output values, helping to verify the design's behavior at each time point.

IO

#InputOutputBidirectional
0ui_in[[0]uo_out[0]uio_out[0]
1ui_in[[1]uo_out[1]uio_out[1]
2ui_in[[2]uo_out[2]uio_out[2]
3ui_in[[3]uo_out[3]uio_out[3]
4ui_in[[4]uo_out[4]uio_out[4]
5ui_in[[5]uo_out[5]uio_out[5]
6ui_in[[6]uo_out[6]uio_out[6]
7ui_in[[7]uo_out[7]uio_out[7]

Chip location

Controller Mux Mux Mux Mux Mux Mux Mux Mux Mux Analog Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Analog Mux Mux Mux Mux Analog Mux Mux Mux Mux Mux Mux tt_um_chip_rom (Chip ROM) tt_um_factory_test (Tiny Tapeout Factory Test) tt_um_oscillating_bones (Oscillating Bones) tt_um_rebelmike_incrementer (Incrementer) tt_um_rebeccargb_tt09ball_gdsart (TT09Ball GDS Art) tt_um_tt_tinyQV (TinyQV 'Asteroids' - Crowdsourced Risc-V SoC) tt_um_DalinEM_asic_1 (ASIC) tt_um_urish_simon (Simon Says memory game) tt_um_rburt16_bias_generator (Bias Generator) tt_um_librelane3_test (Tiny Tapeout LibreLane 3 Test) tt_um_10_vga_crossyroad (Crossyroad) tt_um_rebeccargb_universal_decoder (Universal Binary to Segment Decoder) tt_um_rebeccargb_hardware_utf8 (Hardware UTF Encoder/Decoder) tt_um_rebeccargb_intercal_alu (INTERCAL ALU) tt_um_rebeccargb_dipped (Densely Packed Decimal) tt_um_rebeccargb_styler (Styler) tt_um_rebeccargb_vga_timing_experiments (VGA Timing Experiments) tt_um_rebeccargb_colorbars (Color Bars) tt_um_rebeccargb_vga_pride (VGA Pride) tt_um_cw_vref (Current-Mode Bandgap Reference) tt_um_tinytapeout_logo_screensaver (VGA Screensaver with Tiny Tapeout Logo) tt_um_rburt16_opamp_3stage (OpAmp 3stage) tt_um_gamepad_pmod_demo (Gamepad Pmod Demo) tt_um_micro_tiles_container (Micro tile container) tt_um_virantha_enigma (Enigma - 52-bit Key Length) tt_um_jamesrosssharp_1bitam (1bit_am_sdr) tt_um_jamesrosssharp_tiny1bitam (Tiny 1-bit AM Radio) tt_um_MichaelBell_rle_vga (RLE Video Player) tt_um_MichaelBell_mandelbrot (VGA Mandelbrot) tt_um_murmann_group (Decimation Filter for Incremental and Regular Delta-Sigma Modulators) tt_um_betz_morse_keyer (Morse Code Keyer) tt_um_urish_giant_ringosc (Giant Ring Oscillator (3853 inverters)) tt_um_tiny_pll (Tiny PLL) tt_um_tc503_countdown_timer (Countdown Timer) tt_um_richardgonzalez_ped_traff_light (Pedestrian Traffic Light) tt_um_analog_factory_test (TT08 Analog Factory Test) tt_um_alexandercoabad_mixedsignal (mixedsignal) tt_um_tgrillz_sixSidedDie (Six Sided Die) tt_um_mattvenn_analog_ring_osc (Ring Oscillators) tt_um_vga_clock (VGA clock) tt_um_mattvenn_r2r_dac_3v3 (Analog 8 bit 3.3v R2R DAC) tt_um_mattvenn_spi_test (SPI test) tt_um_quarren42_demoscene_top (asic design is my passion) tt_um_micro_tiles_container_group2 (Micro tile container (group 2)) tt_um_z2a_rgb_mixer (RGB Mixer demo) tt_um_frequency_counter (Frequency counter) tt_um_urish_sic1 (SIC-1 8-bit SUBLEQ Single Instruction Computer) tt_um_tobi_mckellar_top (Capacitive Touch Sensor) tt_um_log_afpm (16-bit Logarithmic Approximate Floating Point Multiplier) tt_um_uwasic_dinogame (UW ASIC - Optimized Dino) tt_um_ece298a_8_bit_cpu_top (8-Bit CPU) tt_um_tqv_peripheral_harness (Rotary Encoder Peripheral) tt_um_led_matrix_driver (SPI LED Matrix Driver) tt_um_2048_vga_game (2048 sliding tile puzzle game (VGA)) tt_um_mac (MAC) tt_um_dpmunit (DPM_Unit) tt_um_nitelich_riscyjr (RISCY Jr.) tt_um_nitelich_conway (Conway's GoL) tt_um_pwen (Pulse Width Encoder) tt_um_mcs4_cpu (MCS-4 4004 CPU) tt_um_mbist (Design of SRAM BIST) tt_um_weighted_majority (Weighted Majority Voter / Trend Detector) tt_um_brandonramos_VGA_Pong_with_NES_Controllers (VGA Pong with NES Controllers) tt_um_brandonramos_opamp_ladder (2-bit Flash ADC) tt_um_NE567Mixer28 (OTA folded cascode) tt_um_acidonitroso_programmable_threshold_voltage_sensor (Programmable threshold voltage sensor) tt_um_DAC1 (tt_um_DAC1) tt_um_trivium_stream_processor (Trivium Stream Cipher) tt_um_analog_example (Digital OTA) tt_um_sortaALUAriaMitra (Sorta 4-Bit ALU) tt_um_RoyTr16 (Connect Four VGA) tt_um_jnw_wulffern (JNW-TEMP) tt_um_serdes (Secure SERDES with Integrated FIR Filtering) tt_um_limpix31_r0 (VGA Human Reaction Meter) tt_um_torurstrom_async_lock (Asynchronous Locking Unit) tt_um_galaguna_PostSys (Post's Machine CPU Based) tt_um_edwintorok (Rounding error) tt_um_td4 (tt-td04) tt_um_snn (Reward implemented Spiking Neural Network) tt_um_matrag_chirp_top (Tiny Tapeout Chirp Modulator) tt_um_sha256_processor_dvirdc (SHA-256 Processor) tt_um_pchri03_levenshtein (Fuzzy Search Engine) tt_um_AriaMitraClock (12 Hour Clock (with AM and PM)) tt_um_swangust (posit8_add) tt_um_DelosReyesJordan_HDL (Reaction Time Test) tt_um_upalermo_simple_analog_circuit (Simple Analog Circuit) tt_um_swangust2 (posit8_mul) tt_um_thexeno_rgbw_controller (RGBW Color Processor) tt_um_top_layer (Spike Detection and Classification System) tt_um_Alida_DutyCycleMeter (Duty Cycle Meter) tt_um_dco (Digitally Controlled Oscillator) tt_um_8bitalu (8-bit Pipelined ALU) tt_um_resfuzzy (resfuzzy) tt_um_javibajocero_top (MarcoPolo) tt_um_Scimia_oscillator_tester (Oscillator tester) tt_um_ag_priority_encoder_parity_checker (Priority Encoder with Parity Checker) tt_um_tnt_mosbius (tnt's variant of SKY130 mini-MOSbius) tt_um_program_counter_top_level (Test Design 1) tt_um_subdiduntil2_mixed_signal_classifier (Mixed-signal Classifier) tt_um_dac_test3v3 (Analog 8 bit 3.3v R2R DAC) tt_um_LPCAS_TP1 ( LPCAS_TP1 ) tt_um_regfield (Register Field) tt_um_delaychain (Delay Chain) tt_um_tdctest_container (Micro tile container) tt_um_spacewar (Spacewar) tt_um_Enhanced_pll (Enhance PLL) tt_um_romless_cordic_engine (ROM-less Cordic Engine) tt_um_ev_motor_control (PLC Based Electric Vehicle Motor Control System) tt_um_plc_prg (PLC-PRG) tt_um_kishorenetheti_tt16_mips (8-bit MIPS Single Cycle Processor) tt_um_snn_core (Adaptive Leaky Integrate-and-Fire spiking neuron core for edge AI) tt_um_myprocessor (8-bit Custom Processor) tt_um_sjsu (SJSU vga demo) tt_um_vedic_4x4 (Vedic 4x4 Multiplier) tt_um_braun_mult (8x8 Braun Array Multiplier) tt_um_r2r_dac (4-bit R2R DAC) tt_um_stochastic_integrator_tt9_CL123abc (Stochastic Integrator) tt_um_uart (UART Controller with FIFO and Interrupts) tt_um_lfsr_stevej (Linear Feedback Shift Register) tt_um_FFT_engine (FFT Engine) tt_um_tpu (Tiny Tapeout Tensor Processing Unit) tt_um_tt_tinyQVb (TinyQV 'Berzerk' - Crowdsourced Risc-V SoC) tt_um_IZ_RG_22 (IZ_RG_22) tt_um_32_bit_fp_ALU_S_M (32-bit floating point ALU) tt_um_AriaMitraGames (Games (Tic Tac Toe and Rock Paper Scissors)) tt_um_sc_bipolar_qif_neuron (Stochastic Computing based QIF model neuron) tt_um_mac_spst_tiny (Low Power and Enhanced Speed Multiplier, Accumulator with SPST Adder) tt_um_kb2ghz_xalu (4-bit minicomputer ALU) tt_um_emmersonv_tiq_adc (3 Bit TIQ ADC) tt_um_simonsays (Simon Says) tt_um_BNN (8-bit Binary Neural Network) tt_um_anweiteck_2stageCMOSOpAmp (2 Stage CMOS Op Amp) tt_um_6502 (Simplified 6502 Processor) tt_um_swangust3 (posit8_div) tt_um_jonathan_thing_vga (VGA-Video-Player) tt_um_wokwi_412635532198550529 (ttsky-pettit-wokproc-trainer) tt_um_vga_hello_world (VGA HELLO WORLD) tt_um_jyblue1001_pll (Analog PLL) tt_um_BryanKuang_mac_peripheral (8-bit Multiply-Accumulate (MAC) with 2-Cycle Serial Interface) tt_um_rebeccargb_tt09ball_screensaver (TT09Ball VGA Screensaver) tt_um_openfpga22 (Open FGPA 2x2 design) tt_um_andyshor_demux (Demux) tt_um_flash_raid_controller (SPI flash raid controller) tt_um_jonnor_pdm_microphone (PDM microphone) tt_um_digital_playground (Sky130 Digital Playground) tt_um_mod6_counter (Mod-6 Counter) tt_um_BMSCE_T2 (Choreo8) tt_um_Richard28277 (4-bit ALU) tt_um_shuangyu_top (Calculator) tt_um_wokwi_441382314812372993 (Sumador/restador de 4 bits) tt_um_TensorFlowE (TensorFlowE) tt_um_wokwi_441378095886546945 (7SDSC) tt_um_wokwi_440004235377529857 (Latched 4-bits adder) tt_um_dlmiles_tqvph_i2c (TinyQV I2C Controller Device) tt_um_markgarnold_pdp8 (Serial PDP8) tt_um_wokwi_441564414591667201 (tt-parity-detector) tt_um_vga_glyph_mode (VGA Glyph Mode) tt_um_toivoh_pwl_synth (PiecewiseOrionSynth Deluxe) tt_um_minirisc (MiniRISC-FSM) tt_um_wokwi_438920793944579073 (Multiple digital design structures) tt_um_sleepwell (Sleep Well) tt_um_lcd_controller_Andres078 (LCD_controller) tt_um_SummerTT_HDL (SJSU Summer Project: Game of Life) tt_um_chrishtet_LIF (Leaky Integrate and Fire Neuron) tt_um_diff (ttsky25_EpitaXC) tt_um_htfab_split_flops (Split Flops) tt_um_alu_4bit_wrapper (4-bit ALU with Flags) tt_um_tnt_rf_test (TTSKY25A Register File Test) tt_um_mosbius (mini mosbius) tt_um_robot_controller_top_module (AR Chip) tt_um_flummer_ltc (Linear Timecode (LTC) generator) tt_um_stress_sensor (Tiny_Tapeout_2025_three_sensors) tt_um_krisjdev_manchester_baby (Manchester Baby) tt_um_mbikovitsky_audio_player (Simple audio player) tt_um_wokwi_414123795172381697 (TinySnake) tt_um_vga_example (Jabulani Ball VGA Demo ) tt_um_stochastic_addmultiply_CL123abc (Stochastic Multiplier, Adder and Self-Multiplier) tt_um_nvious_graphics (nVious Graphics) tt_um_pe_simonbju (pe) tt_um_mikael (TinyTestOut) tt_um_brent_kung (brent-kung_4) tt_um_7FM_ShadyPong (ShadyPong) tt_um_algofoogle_vga_matrix_dac (Analog VGA CSDAC experiments) tt_um_tv_b_gone (TV-B-Gone) tt_um_sjsu_vga_music (SJSU Fight Song) tt_um_fsm_haz (FSM based RISC-V Pipeline Hazard Resolver) tt_um_dma (DMA controller) tt_um_3v_inverter_SiliconeGuide (Analog Double Inverter) tt_um_rejunity_lgn_mnist (LGN hand-written digit classifier (MNIST, 16x16 pixels)) tt_um_gray_sobel (Gray scale and Sobel filter for Edge Detection) tt_um_Xgamer1999_LIF (Demonstration of Leaky integrate and Fire neuron SJSU) tt_um_dac12 (12 bit DAC) tt_um_voting_machine (Digital Voting Machine) tt_um_updown_counter (8bit_up-down_counter) tt_um_openram_top (Single Port OpenRAM Testchip) tt_um_customalu (Custom ALU) tt_um_assaify_mssf_pll (24 MHz MSSF PLL) tt_um_Maj_opamp (2-Stage OpAmp Design) tt_um_wokwi_442131619043064833 (Encoder 7 segments display) tt_um_wokwi_441835796137492481 (TESVG Binary Counter and shif register ) tt_um_combo_haz (Combinational Logic Based RISC-V Pipeline Hazard Resolver) tt_um_tx_fsm (Design and Functional Verification of Error-Correcting FIFO Buffer with SECDED and ARQ ) tt_um_will_keen_solitaire (solitaire) tt_um_rom_vga_screensaver (VGA Screensaver with embedded bitmap ROM) tt_um_13hihi31_tdc (Time to Digital Converter) tt_um_dteal_awg (Arbitrary Waveform Generator) tt_um_LIF_neuron (AFM_LIF) tt_um_rebelmike_register (Circulating register test) tt_um_MichaelBell_hs_mul (8b10b decoder and multiplier) tt_um_SNPU (random_latch) tt_um_rejunity_atari2600 (Atari 2600) tt_um_bit_serial_cpu_top (16-bit bit-serial CPU) tt_um_semaforo (semaforo) tt_um_bleeptrack_cc1 (Cross stitch Creatures #1) tt_um_bleeptrack_cc2 (Cross stitch Creatures #2) tt_um_bleeptrack_cc3 (Cross stitch Creatures #3) tt_um_bleeptrack_cc4 (Cross stitch Creatures #4) tt_um_bitty (Bitty) tt_um_spi2ws2811x16 (spi2ws2811x8) tt_um_uart_spi (UART and SPI Communication blocks with loopback) tt_um_urish_charge_pump (Dickson Charge Pump) tt_um_adc_dac_tern_alu (adc_dac_BCT_addr_ALU_STI) tt_um_sky1 (GD Sky Processor) tt_um_fifo (ASYNCHRONOUS FIFO) tt_um_TT16 (Asynchronous FIFO) tt_um_axi4lite_top (Axi4_Lite) tt_um_TT06_pwm (PWM Generator) tt_um_hack_cpu (HACK CPU) tt_um_marxkar_jtag (JTAG CONTROLLER) tt_um_cache_controller (Simple Cache Controller) tt_um_stopwatchtop (Stopwatch with 7-seg Display) tt_um_adpll (all-digital pll) tt_um_tnt_rom_test (TT09 SKY130 ROM Test) tt_um_tnt_rom_nolvt_test (TT09 SKY130 ROM Test (no LVT variant)) tt_um_wokwi_414120207283716097 (fulladder) tt_um_kianV_rv32ima_uLinux_SoC (KianV uLinux SoC) tt_um_tv_b_gone_rom (TV-B-Gone-EU) Available Available Available Available Available Available Available Available Available Available Available Available Available