201 Classic 8-bit era Programmable Sound Generator SN76489

201 : Classic 8-bit era Programmable Sound Generator SN76489

Design render
  • Author: ReJ aka Renaldas Zioma
  • Description: The SN76489 Digital Complex Sound Generator (DCSG) is a programmable sound generator chip from Texas Instruments.
  • GitHub repository
  • Clock: 4000000 Hz

How it works

This Verilog implementation is a replica of the classical SN76489 programmable sound generator. With roughly a 1400 logic gates this design fits on a single tile of the TinyTapeout.

The goals of this project

  1. closely replicate the behavior and eventually the complete design of the original SN76489
  2. provide a readable and well documented code for educational and hardware preservation purposes
  3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and validation against the original chip behavior.

The future work

The next step is to incorporate analog elements into the design to match the original SN76489 - DAC for each channel and an analog OpAmp for channel summation.

Chip technical capabilities

  • 3 square wave tone generators
  • 1 noise generator
  • 2 types of noise: white and periodic
  • Capable to produce a range of waves typically from 122 Hz to 125 kHz, defined by 10-bit registers.
  • 16 different volume levels

Registers The behavior of the SN76489 is defined by 8 "registers" - 4 x 4 bit volume registers, 3 x 10 bit tone registers and 1 x 3 bit noise configuration register.

Channel Volume registers Tone & noise registers
0 Channel #0 attenuation Tone #0 frequency
1 Channel #1 attenuation Tone #1 frequency
2 Channel #2 attenuation Tone #2 frequency
3 Channel #3 attenuation Noise type and frequency

Square wave tone generators Square waves are produced by counting down the 10-bit counters. Each time the counter reaches the 0 it is reloaded with the corresponding value from the configuration register and the output bit of the channel is flipped producing square waves.

Noise generator Noise is produced with 15-bit Linear-feedback Shift Register (LFSR) that flips the output bit pseudo randomly. The shift rate of the LFSR register is controller either by one of the 3 hardcoded power-of-two dividers or output from the channel #2 tone generator is used.

Attenuation Each of the four SN76489 channels have dedicated attenuation modules. The SN76489 has 16 steps of attenuation, each step is 2 dB and maximum possible attenuation is 28 dB. Note that the attenuation definition is the opposite of volume / loudness. Attenuation of 0 means maximum volume.

Finally, all the 4 attenuated signals are summed up and are sent to the output pin of the chip.

Historical use of the SN76489

The SN76489 family of programmable sound generators was introduced by Texas Instruments in 1980. Variants of the SN76489 were used in a number of home computers, game consoles and arcade boards:

The SN76489 chip family competed with the similar General Instrument AY-3-8910.

The original pinout of the SN76489AN

             ,--._.--.
      D5  -->|1    16|<-- VCC
      D6  -->|2    15|<-- D4
      D7  -->|3    14|<-- CLOCK
   ready* <--|4    13|<-- D3
     /WE  -->|5    12|<-- D2
     /ce* -->|6    11|<-- D1
AUDIO OUT <--|7    10|<-- D0
      GND ---|8     9|    not connected*
             `-------'
      * -- omitted from this Verilog implementation

Difference from the original hardware

This Verilog implementation is a completely digital and synchronous design that differs from the original SN76489 design which incorporated analog parts.

Audio signal output While the original chip had integrated OpAmp to sum generated channels in analog fashion, this implementation does digital signal summation and digital output. The module provides two alternative outputs for the generated audio signal:

  1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
  2. pseudo analog output through Pulse Width Modulation (PWM)

Separate 4 channel output Outputs of all 4 channels are exposed along with the master output. This allows to validate and mix signals externally. In contrast the original chip was limited to a single audio output pin due to the PDIP-16 package.

No DC offset This implementation produces output 0/1 waveforms without DC offset.

No /CE and READY pins Chip enable control pin /CE is omitted in this design for simplicity. The behavior is the same as if /CE is tied low and the chip is considered always enabled.

Unlike the original SN76489 which took 32 cycles to update registers, this implementation handles register writes in a single cycle and chip behaves as always READY.

Synchronous reset and single phase clock The original design employed 2 phases of the clock for the operation of the registers. The original chip had no reset pin and would wake up to a random state.

To make it easier to synthesize and test on FPGAs this implementation uses single clock phase and synchronous reset for registers.

A configurable clock divider was introduced in this implementation.

  1. the original SN76489 with the master clock internally divided by 16. This classical chip was intended for PAL and NTSC frequencies. However in BBC Micro 4 MHz clock was employed.
  2. SN94624/SN76494 variants without internal clock divider. These chips were intended for use with 250 to 500 KHz clocks.
  3. high frequency clock configuration for TinyTapeout, suitable for a range between 25 MHz and 50 Mhz. In this configuration the master clock is internally divided by 128.

The reverse engineered SN76489

This implementation is based on the results from these reverse engineering efforts:

  1. Annotations and analysis of a decapped SN76489A chip.
  2. Reverse engineered schematics based on a decapped VDP chip from Sega Mega Drive which included a SN76496 variant.

How to test

The data bus of the SN76489 chip has to be connected to microcontroller and receive a regular stream of commands. The SN76489 produces audio output and has to be connected to a speaker. There are several ways how the overall schematics can be established.

8-bit parallel output via DAC One option is to connect off the shelf data parallel Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins and route the resulting analog audio to piezo speaker or amplifier.

  uController              SN76489
  ,---------.            ,---._.---. 
  |         |    4 Mhz ->|CLK  SEL0|<-- 0
  |    GPIOx|----------->|D0   SEL1|<-- 0
  |    GPIOx|----------->|D1       |         ,----------.
  |    GPIOx|----------->|D2   OUT0|-------->|LSB       |
  |    GPIOx|----------->|D3   OUT1|-------->|          |  
  |    GPIOx|----------->|D4   OUT2|-------->|   pDAC   |  Headphones
  |    GPIOx|----------->|D5   OUT3|-------->|    or    |      or    
  |    GPIOx|----------->|D6   OUT4|-------->| RESISTOR |    Buzzer    
  |    GPIOx|----------->|D7   OUT5|-------->|  ladder  |         /|
  |    GPIOx|----------->|/WE  OUT6|-------->|          |     .--/ |
  `---------'            |     OUT7|-------->|MSB       |-----|    |
                         `---------'         `----------'     `--` |
                                                               |  `|
                                                               |
                                                          GND ---  

AUDIO OUT through RC filter Another option is to use the Pulse Width Modulated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based integrator:

  uController              SN76489
  ,---------.            ,---._.---. 
  |         |    4 Mhz ->|CLK  SEL0|<-- 0
  |    GPIOx|----------->|D0   SEL1|<-- 0
  |    GPIOx|----------->|D1       |
  |    GPIOx|----------->|D2       |
  |    GPIOx|----------->|D3       |          C1
  |    GPIOx|----------->|D4       |     ,----||----.
  |    GPIOx|----------->|D5       |     |          | 
  |    GPIOx|----------->|D6       |     |  Op-amp  |        Speaker     
  |    GPIOx|----------->|D7  AUDIO|     |   |X     |            /|
  |    GPIOx|----------->|/WE  OUT |-----+---|-X    |   C2   .--/ |
  `---------'            `---------'         |  }---+---||---|    |
                                          ,--|+/             `--` |
                                          |  |/               |  `|
                                          |                   |
                                     GND ---             GND ---  

Separate channels through the Op-amp The third option is to externally combine 4 channels with the Operational Amplifier and low-pass filter:

  uController              SN76489
  ,---------.            ,---._.---. 
  |         |    4 Mhz ->|CLK  SEL0|<-- 0
  |    GPIOx|----------->|D0   SEL1|<-- 0
  |    GPIOx|----------->|D1       |
  |    GPIOx|----------->|D2       |
  |    GPIOx|----------->|D3       |           C1
  |    GPIOx|----------->|D4       |      ,----||----.
  |    GPIOx|----------->|D5  chan0|---.  |          | 
  |    GPIOx|----------->|D6  chan1|---+  |  Op-amp  |        Speaker
  |    GPIOx|----------->|D7  chan2|---+  |   |X     |            /|
  |    GPIOx|----------->|/WE chan3|---+--+---|-X    |   C2   .--/ |
  `---------'            `---------'          |  }---+---||---|    |
                                           ,--|+/             `--` |
                                           |  |/               |  `|
                                           |                   |
                                      GND ---             GND ---  

Summary of commands to communicate with the chip

The SN76489 is programmed by updating its internal registers via the data bus. Below is a short summary of the communication protocol of SN76489. Please consult SN76489 Technical Manual for more information.

Command Description Parameters
1cc0ffff Set tone fine frequency f - 4 low bits, c - channel #
00ffffff Follow up with coarse frequency f - 6 high bits
11100bff Set noise type and frequency b - white/periodic, f - frequency control
1cc1aaaa Set channel attenuation a - 4 bit attenuation, c - channel #
NF1 NF0 Noise frequency control
0 0 Clock divided by 512
0 1 Clock divided by 1024
1 0 Clock divided by 2048
1 1 Use channel #2 tone frequency

Write to SN76489 Hold /WE low once data bus pins are set to the desired values. Pull /WE high before setting different value on the data bus.

Note frequency

Use the following formula to calculate the 10-bit period value for a particular note :

$ tone period_{cycles} = clock_{frequency} / (32_{cycles} * note_{frequency}) $

For example 10-bit value that plays 440 Hz note on a chip clocked at 4 MHz would be:

$ tone period_{cycles} = 4000000 Hz / (32_{cycles} * 440 Hz) = 284 = 11C_{hex} $

An example to play a note accompanied with a lower volume noise

/WE D7 D6/5 D4..D0 Explanation
0 1 00 01100 Set channel #0 tone low 4-bits to $C_{hex} = 1100_{bin}$
0 0 00 10001 Set channel #0 tone high 6-bits to $11_{hex} = 010001_{bin}$
0 1 00 10000 Set channel #0 volume to 100%, attenuation 4-bits are $0_{dec} = 0000_{bin}$
0 1 11 00100 Set channel #3 noise type to white and divider to 512
0 1 11 11000 Set channel #3 noise volume to 50%, attenuation 4-bits are $8_{dec} = 1000_{bin}$
Timing diagram


CLK   ____      ____      ____      ____      ____      ____         
   __/    `____/    `____/    `____/    `____/    `____/    `___ ...
     |        |         |         |         |         |
     |        |         |         |         |         |

/WE _       __        __        __        __        _______
     `_____/  `______/  `______/  `______/  `______/   *
                                                       ^
D7..D0_______  ________  ________  ________  ________  |
   _/10001100  00010001  10010000  11100100  11111000`_|______
      chan#0    chan#0    chan#0    chan#3    chan#3   |
    tone=h??C   =h11C    atten=0    div=16    atten=8  |
      h011C = 440 Hz              /16 = ~1 Khz         |
                                 white noise           |
                                                       |
                                                 noise restarts
                                            after /WE goes high and
                                     there was a write to noise register

Configurable clock divider

Clock divider can be controlled through SEL0 and SEL1 control pins and allows to select between 3 chip variants.

SEL1 SEL0 Description Clock frequency
0 0 SN76489 mode, clock divided by 16 3.5 .. 4.2 MHz
1 1 -----//----- 3.5 .. 4.2 MHz
0 1 SN76494 mode, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz
SEL1 SEL0 Formula to calculate the 10-bit tone period value for a note
0 0 $clock_{frequency} / (32_{cycles} * note_{frequency})$
1 1 -----//-----
0 1 $clock_{frequency} / (2_{cycles} * note_{frequency})$
1 0 $clock_{frequency} / (256_{cycles} * note_{frequency})$

Some examples of music recorded from the chip simulation

  • [https://www.youtube.com/watch?v=ghBGasckpSY](Crazee Rider BBC Micro game)
  • [https://www.youtube.com/watch?v=HXLAdA02I-w](MISSION76496 tune for Sega Master System)

External hardware

DAC (for ex. Digilent R2R PMOD), RC filter, amplifier, speaker

Picture

IO

#InputOutputBidirectional
0D0 data busdigital audio LSB(in) **/WE** write enable
1D1 data busdigital audio(in) **SEL0** clock divider
2D2 data busdigital audio(in) **SEL1** clock divider
3D3 data busdigital audio(out) channel 0 (PWM)
4D4 data busdigital audio(out) channel 1 (PWM)
5D5 data busdigital audio(out) channel 2 (PWM)
6D6 data busdigital audio(out) channel 3 (PWM)
7D7 data busdigital audio MSB(out) AUDIO OUT master (PWM)

Chip location

Controller Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux tt_um_chip_rom (Chip ROM) tt_um_factory_test (TinyTapeout 05 Factory Test) tt_um_loopback (TinyTapeout 05 Loopback Test Module) tt_um_Leaky_Integrate_Fire_nfjesifb (Leaky Integrate and Fire Neuron Model) tt_um_topModuleKA (Time Multiplexed Neuron Ckt) tt_um_sap_1 (SAP-1 Computer) tt_um_lif (Leaky Integrate-and-Fire Neuron (Verilog Demo)) tt_um_jleugeri_ticktocktokens (TickTockTokens) tt_um_LSNN (Spiking LSTM Network) tt_um_if (Integrate-and-Fire Neuron. (Verilog Demo)) tt_um_mihailocode_neural_network (Neural network on chip) tt_um_hls_lfi (Simple Leaky Integrate and Fire (LIF) Neuron) tt_um_diadatp_spigot_e (e Spigot) tt_um_kskyou (Continued Fraction Calculator) tt_um_wokwi_380005495431181313 (Water Pump Controller) tt_um_EventFilter (Event Denoising Circuit) tt_um_wokwi_380416099936681985 (7 segment seconds (Verilog Demo)) tt_um_freq_hcohensa (Frequency Encoder/Decoder) tt_um_wokwi_380410498092232705 (UART Greeter with RNN Module) tt_um_wokwi_380120751165092865 (WS2812B LED strip driver) tt_um_wokwi_380408486941145089 (Tiny Tapeout 5 Workshop) tt_um_wokwi_380409169798008833 (Tiny Tapeout 1) tt_um_wokwi_380409488188706817 (Supercon Workshop) tt_um_matrix_multiplier (Matrix Multiplier) tt_um_wokwi_380408594272345089 (Clock Divider) tt_um_wokwi_380408784463076353 (Binary Counter) tt_um_wokwi_380408396356749313 (ring osc test) tt_um_7segx4_clock_abhishek_top (7 segment clock with 4 digits) tt_um_wokwi_380409481852161025 (test001) tt_um_hodgkin_huxley (Hodgkin-Huxley Chip Design) tt_um_wokwi_380408823952452609 (Character Selector) tt_um_wokwi_380409904919056385 (Intructouction to PRBS) tt_um_wokwi_380409081067502593 (tto5 Supercon Project) tt_um_jmadden173_delta_modulation (Delta Modulation Spike Encoding) tt_um_wokwi_380409086743445505 (GameOfLife) tt_um_reflex_game (Reflex Game) tt_um_wokwi_380409019830656001 (Logic Gates Tapeout) tt_um_Fiona_CMU (Stream Cipher w/ LSR) tt_um_wokwi_380409532780455937 (tt5modifyd) tt_um_alu_chip (ALU Chip) tt_um_wokwi_380408936929183745 (Tapeout Test) tt_um_rjmorgan11_calculator_chip (Calculator chip) tt_um_wokwi_380409369220404225 (Shifty Snakey) tt_um_synth_GyanepsaaS (Synth) tt_um_wokwi_380408774591779841 (Sawtooth Generator) tt_um_wokwi_380197591775930369 (Blinking A) tt_um_wokwi_380409393770716161 (Supercon 2023) tt_um_mvm (Sparsity Aware Matrix Vector Multiplication) tt_um_wokwi_380408455148316673 (Ring Oscillator and Clock Source Switch) tt_um_mv_mult_alrdelcr (Matrix Vector Multiplication (Verilog Demo)) tt_um_wokwi_380416361853146113 (IDK WHAT TO DO) tt_um_wokwi_379319062779062273 (7-segment display logic system ) tt_um_wokwi_380409568391147521 (Hardware Trojan Example) tt_um_wokwi_379824923824476161 (Analog Clock) tt_um_wokwi_380145600224164865 (7 segment display) tt_um_wokwi_379889284755158017 (W_Li_10/28) tt_um_wokwi_380408409844584449 (Supecon Gate Play) tt_um_manjushettar (ECE 183 - Integrate and Fire Network Chip Design) tt_um_wokwi_380409236812508161 (tto5) tt_um_rebel2_balanced_ternary_ALU (REBEL-2 Balanced Ternary ALU) tt_um_wokwi_380229599886002177 (Stochastic Multiplier) tt_um_jeffdi_seven_segment_seconds (7 segment seconds - count down) tt_um_wokwi_380416616536542209 (TT05 Submission) tt_um_lif_n (Leaky Integrate-and-Fire Neuron) tt_um_wokwi_379764885531576321 (Count via LFSR) tt_um_dlmiles_tt05_i2c_bert (I2C BERT) tt_um_loopback_ericsmi (tt05-loopback tile with input skew measurement) tt_um_flappy_vga_cutout1 (Flappy VGA) tt_um_async_proc_paulschulz (Asynchronous Parallel Processor Demonstrator) tt_um_wokwi_380055891603379201 (Hex Countdown) tt_um_nickjhay_processor (Matrix multiply coprocessor (8x8 1bit)) tt_um_htfab_cell_tester (Standard cell generator and tester) tt_um_wta (Winner-Take-All Network (Verilog Demo)) tt_um_muncherkin_lioncage (Lion cage) tt_um_seven_segment_seconds_ksandov4 (Brain Inspired Random Dropout Circuit) tt_um_seanvenadas (Event-Based Denoising Circuit) tt_um_wokwi_378231665807713281 (RAM cell test) tt_um_rejunity_ay8913 (Classic 8-bit era Programmable Sound Generator AY-3-8913) tt_um_rnn (RNN (Demo)) tt_um_gharenthi_top (STDP Neuron) tt_um_SNN (Basic Spiking Neural Network) tt_um_btflv_8bit_fp_adder (8 bit floating point adder) tt_um_perceptron (Perceptron Hardcoded) tt_um_jkprz (Cheap and quick STDP) tt_um_topLevel_derekabarca (Brain-Inspired Oscillatory Network) tt_um_uwuifier (UART uwuifier) tt_um_perceptron_connorguzi (Perceptron and basic binary neural network) tt_um_hadirkhan10_lif_neuron (Leaky Integrate-and-Fire Neuron) tt_um_wokwi_380119282165535745 (7 segment seconds) tt_um_uabc_electronica_2023 (UABC-ELECTRONICA) tt_um_proppy_bytebeat (bytebeat) tt_um_meriac_play_tune (Super Mario Tune on A Piezo Speaker) tt_um_wrapper_inputblackboxoutput (Byte Computer) tt_um_vhdl_seven_segment_seconds (7 segment seconds (VHDL Demo)) tt_um_cejmu (4-Bit ALU) tt_um_rejunity_sn76489 (Classic 8-bit era Programmable Sound Generator SN76489) tt_um_minipit_stevej (Miniature Programmable Interrupt Timer) tt_um_gchenfc_seven_segment_gerry (7-segment Name Display) tt_um_supertails_tetris (Tetris) tt_um_mabhari_seven_segment_seconds (Simple_Timer-MBA) tt_um_njzhu_uart (UART Receiver) tt_um_wokwi_376553022662786049 (AGL CorticoNeuro-1) tt_um_adaptive_lif (Leaky-Integrated Fire Neuron) tt_um_myuart (MyUART) tt_um_wokwi_380438365946734593 (UART test) tt_um_tkmheart (Heart Rhythm Analyzer) tt_um_stdp (Spike-timing dependent plasticity (Verilog Demo)) tt_um_wokwi_380465686251921409 (Tiny Tapeout 5 TM project1) tt_um_thermocouple (Thermocouple-to-temperature converter (digital backend)) tt_um_wokwi_380412382001715201 (Naive 8-bit Binary Counter) tt_um_asinghani_tinyscanchain_tt05 (tinyscanchain Test Design) tt_um_carlosgs99_cro_udg (6 digit chronometer.) tt_um_suhrojo (Convolutional Network Circuit Chip Design) tt_um_mvm_ (Matrix Vector Multiplication Accelerator) tt_um_perceptron_neuromeme (Perceptron (Neuromeme)) tt_um_czlucius_alu (4 Bit ALU) tt_um_BNNNeuron (Binary Neural Network (Verilog Demo)) tt_um_urish_skullfet (SkullFET) tt_um_ja1tye_sound_generator (Wavetable Sound Generator) tt_um_jaylennee_wta_pwm (PWM signal generation with Winner-Take-All selection) tt_um_joerdsonsilva_top (Multimode Modem) tt_um_toivoh_synth (Analog emulation monosynth) tt_um_tiny_game_of_life (Tiny Game of Life) tt_um_mingkaic1_stack_machine (Stack Machine) tt_um_morningjava_top (ChipTune) tt_um_urish_silife (Game of Life 8x8 (siLife)) tt_um_tt05_analog_test (TT05 Analog Testmacro (Ringo, DAC)) tt_um_wokwi_380409528895479809 (RBUART) tt_um_mattngaw_fp8 (8-bit Floating-Point Adder) tt_um_chip_inventor_music__6_bit_count (6 bit Counter and Piano Music created by Chip Inventor) tt_um_4_bit_pipeline_multiplier (4 Bit Pipelined Multiplier) tt_um_wokwi_380477805171811329 (2-Bit ALU + Dice) tt_um_wokwi_380490286828784641 (TT02 Wokwi 7seg remake) tt_um_wokwi_380361576213660673 (ping pong asic) tt_um_prg (A Boolean function based pseudo random number generator (PRNG)) tt_um_digital_clock_sellicott (Digital Desk Clock) tt_um_haozhezhu_top (4-bit FIFO/LIFO) tt_um_top_mole99 (One Sprite Pony) tt_um_GrayCounter_ariz207 (4 bit Sync Gray Code Counter) tt_um_clkdiv (Clock and Random Number Gen) tt_um_matt_divider_test (TT05 Analog Test) tt_um_tomkeddie_a (VGA Experiments) tt_um_rejunity_rule110 (Rule110 cell automata) tt_um_no_time_for_squares_tommythorn (No Time for Squares) tt_um_urish_silife_max (Game of Life 8x32 (siLife)) tt_um_gfg_development_tros (TROS) tt_um_chatgpt_snn_mtomlin5 (ChatGPT designed Spiking Neural Network) tt_um_ks_pyamnihc (Karplus-Strong String Synthesis) tt_um_dinogame (VGA Dino Game) tt_um_himanshu5_prog_chipTop (Dual Compute Unit) tt_um_rtfb_collatz (Collatz conjecture brute-forcer) tt_um_retospect_neurochip (Field Programmable Neural Array) tt_um_urish_dffram (DFFRAM Example (128 bytes)) tt_um_rejunity_snn (Chonky SNN) tt_um_hh (Hodgkin-Huxley Neuron) tt_um_wokwi_377426511818305537 (PRBS Generator) tt_um_devinatkin_stopwatch (Stop Watch) tt_um_algofoogle_vga_spi_rom (vga_spi_rom) tt_um_blink (RO and counter) tt_um_ttl74hc595_v2 (8-Bit Shift Register with Output Latches 74HC595) tt_um_psychogenic_neptuneproportional (Neptune guitar tuner (proportional window, version b, debug output on bidir pins, larger set of frequencies)) tt_um_urish_simon (Simon Says game) tt_um_kianV_rv32ima_uLinux_SoC (KianV uLinux SoC) tt_um_urish_ringosc_cnt (Ring oscillator with counter) tt_um_sunaofurukawa_cpu_8bit (cpu_8bit) tt_um_vga_clock (VGA clock) tt_um_seven_segment_seconds (7 segment seconds (Verilog Demo)) tt_um_frequency_counter (Frequency counter) tt_um_rgb_mixer (RGB Mixer) tt_um_MichaelBell_spi_peri (SPI Peripheral) tt_um_multiplexed_clock (Multiplexed clock) tt_um_psychogenic_shaman (Shaman: SHA-256 hasher) tt_um_yubex_metastability_experiment (metastability experiment) Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available Available