
Tiny Tapeout 02 Datasheet
Project Repository

https://github.com/TinyTapeout/tinytapeout-02

January 2, 2023

Contents

Render of whole chip 7

Projects 8
0 : Test Inverter Project . 8
1 : SIMON Cipher . 9
2 : HD74480 Clock . 10
3 : Scrolling Binary Matrix display . 12
4 : Power supply sequencer . 14
5 : Duty Controller . 15
6 : S4GA: Super Slow Serial SRAM FPGA 17
7 : ALU . 19

1

https://github.com/TinyTapeout/tinytapeout-02

8 : The McCoy 8-bit Microprocessor . 20
9 : binary clock . 21
10 : TinySensor . 23
11 : 16x8 SRAM & Streaming Signal Generator 25
12 : German Traffic Light State Machine 27
13 : 4-spin Ising Chain Simulation . 28
14 : Avalon Semiconductors ‘5401’ 4-bit Microprocessor 30
15 : small FFT . 32
16 : Stream Integrator . 33
17 : tiny-fir . 35
18 : Configurable SR . 36
19 : LUTRAM . 38
20 : chase the beat . 39
21 : BCD to 7-segment encoder . 40
22 : A LED Flasher . 41
23 : 4-bit Multiplier . 42
24 : Avalon Semiconductors ‘TBB1143’ Programmable Sound Generator . . 43
25 : Transmit UART . 45
26 : RGB LED Matrix Driver . 46
27 : Tiny Phase/Frequency Detector . 47
28 : Loading Animation . 48
29 : tiny egg timer . 50
30 : Potato-1 (Brainfuck CPU) . 51
31 : heart zoe mom dad . 54
32 : Tiny Synth . 55
33 : 5-bit Galois LFSR . 56
34 : prbs15 . 58
35 : 4-bit badge ALU . 59
36 : Pi (�) to 1000+ decimal places . 60
37 : Siren . 62
38 : YaFPGA . 63
39 : M0: A 16-bit SUBLEQ Microprocessor 64
40 : bitslam . 66
41 : 8x8 Bit Pattern Player . 68
42 : XLS: bit population count . 70
43 : RC5 decoder . 71
44 : chiDOM . 72
45 : Super Mario Tune on A Piezo Speaker 73
46 : Tiny rot13 . 75
47 : 4 bit counter on steamdeck . 77
48 : Shiftregister Challenge 40 Bit . 78
49 : TinyTapeout2 4-bit multiplier. 80
50 : TinyTapeout2 multiplexed segment display timer. 82

2

51 : XLS: 8-bit counter . 83
52 : XorShift32 . 84
53 : XorShift32 . 85
54 : Multiple Tunes on A Piezo Speaker 86
55 : clash cpu . 87
56 : TinyTapeout 2 LCD Nametag . 88
57 : UART-CC . 89
58 : 3-bit 8-channel PWM driver . 90
59 : LEDChaser from LiteX test . 91
60 : 8-bit (E4M3) Floating Point Multiplier 92
61 : Dice roll . 94
62 : CNS TT02 Test 1:Score Board . 95
63 : CNS002 (TT02-Test 2) . 96
64 : Test2 . 97
65 : 7-segment LED flasher . 99
66 : Nano-neuron . 100
67 : SQRT1 Square Root Engine . 101
68 : Breathing LED . 102
69 : Fibonacci & Gold Code . 103
70 : tinytapeout2-HELLo-3orLd-7seg . 105
71 : Non-restoring Square Root . 106
72 : GOL-Cell . 108
73 : 7-channel PWM driver controlled via SPI bus 110
74 : hex shift register . 111
75 : Ring OSC Speed Test . 112
76 : TinyPID . 114
77 : TrainLED2 - RGB-LED driver with 8 bit PWM engine 115
78 : Zinnia+ (MCPU5+) 8 Bit CPU . 117
79 : 4 bit CPU . 118
80 : Stack Calculator . 120
81 : 1-bit ALU . 126
82 : SPI Flash State Machine . 128
83 : r2rdac . 130
84 : Worm in a Maze . 131
85 : 8 bit CPU . 132
86 : Pseudo-random number generator 134
87 : BCD to 7-Segment Decoder . 136
88 : Frequency Counter . 137
89 : Taillight controller of a 1965 Ford Thunderbird 138
90 : FPGA test . 139
91 : chi 2 shares . 140
92 : chi 3 shares . 141
93 : Whisk: 16-bit Serial RISC CPU . 142

3

94 : Scalable synchronous 4-bit tri-directional loadable counter 144
95 : Asynchronous Binary to Ternary Converter and Comparator 146
96 : Vector dot product . 148
97 : Monte Carlo Pi Integrator . 149
98 : Funny Blinky . 150
99 : GPS C/A PRN Generator . 151
100 : Sigma-Delta ADC/DAC . 152
101 : BCD to Hex 7-Segment Decoder 154
102 : SRLD . 155
103 : Counter . 156
104 : 2bitALU . 157
105 : A (7, 1/2) Convolutional Encoder 158
106 : Tiny PIC-like MCU . 160
107 : RV8U - 8-bit RISC-V Microcore Processor 161
108 : Logic-2G97-2G98 . 162
109 : Melody Generator . 163
110 : Rotary Encoder Counter . 164
111 : Wolf sheep cabbage river crossing puzzle ASIC design 165
112 : Low-speed UART transmitter with limited character set loading 167
113 : Rotary encoder . 169
114 : FROG 4-Bit CPU . 171
115 : Configurable Gray Code Counter . 172
116 : Baudot Converter . 175
117 : Marquee . 176
118 : channel coding . 177
119 : Chisel 16-bit GCD with scan in and out 178
120 : Adder with 7-segment decoder . 179
121 : Hex to 7 Segment Decoder . 181
122 : Multiple seven-segment digit buffer 182
123 : LED Chaser . 184
124 : Rolling Average - 5 bit, 8 bank . 185
125 : w5s8: universal turing machine core 186
126 : Test3 . 187
127 : Seven Segment Clock . 189
128 : serv - Serial RISCV CPU . 190
129 : 4:2 Compressor . 191
130 : PS2 keyboard Interface . 192
131 : Hello Generator . 193
132 : MicroASIC VI . 195
133 : Optimised Euclidean Algorithm . 196
134 : CRC-16 and Parity calculator . 197
135 : SevSegFX . 198
136 : LAB11 . 199

4

137 : Option23 Serial . 201
138 : Option23 . 202
139 : Option22 . 203
140 : 4x4 RAM . 204
141 : Digital padlock . 205
142 : FFT Butterfly in Wokwi . 207
143 : Femto 4-bit CPU . 208
144 : Logisim demo - LED blinker . 209
145 : Secret File . 210
146 : Hex to Seven Semgent Converter 211
147 : PWM Generator . 212
148 : 3-bit adder . 213
149 : Continious Math . 214
150 : Async FIFO . 215
151 : Beep Boop Traffic Light Controller 216
152 : Basic 4 bit cpu . 217
153 : Adi counter . 219
154 : Clock divider ASIC . 220
155 : Amaranth 6 Bits Gray counter . 221
156 : 7 segment seconds . 222
157 : 7 segment seconds . 223
158 : Laura’s L . 224
159 : M segments . 225
160 : 7-Seg ‘Tiny Tapeout’ Display . 227
161 : Customizable UART Character . 228
162 : Customizable UART String . 230
163 : Customizable Padlock . 231
164 : PWM Generator . 232
165 : MRCS Verilog test . 233

Technical info 234
Scan chain . 234
Clocking . 236
Clock divider . 236
Wait states . 236
Pinout . 237
Instructions to build GDS . 237
Changing macro block size . 238

Verification 239
Setup . 239
Simulations . 239
Top level tests setup . 241

5

Formal Verification . 241
Timing constraints . 242
Physical tests . 242

Sponsored by 244

Team 244

6

Render of whole chip

Figure 1: Full GDS

7

Projects

0 : Test Inverter Project

• Author: Matt Venn
• Description: Inverts every line. This project is also used to fill any empty design

spaces.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Uses 8 inverters to invert every line.

How to test

Setting the input switch to on should turn the corresponding LED off.

IO

Input Output
0 a segment a
1 b segment b
2 c segment c
3 d segment d
4 e segment e
5 f segment f
6 g segment g
7 dot dot

8

https://github.com/TinyTapeout/tt02-test-invert
https://wokwi.com/projects/341535056611770964

1 : SIMON Cipher

• Author: Fraser Price
• Description: Simon32/64 Encryption
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

Encrypts data by sending it through a feistel network for 32 rounds where it is combined
with the round subkey and the last round. Data is entered into the core via shift
registers.

How to test

Set shift high and shift data in lsb first, 4 bits at a time. Shift in 96 bits, 32
being data and 64 being the key, with the plaintext being shifted in first. Eg
if the plaintext was 32’h65656877 and key was 64’h1918111009080100, then
96’h191811100908010065656877 would be shifted in. Once bits have been shifted in,
bring shift low, wait 32 clock cycles then set it high again. The ciphertext will be
shifted out lsb first.

IO

Input Output
0 clock data_out[0]
1 shift data_out[1]
2 data_in[0] data_out[2]
3 data_in[1] data_out[3]
4 data_in[2] segment e
5 data_in[3] segment f
6 none segment g
7 none none

9

https://github.com/Fraserbc/tt02-simon

2 : HD74480 Clock

Figure 2: picture

• Author: Tom Keddie
• Description: Displays a clock on a attached HD74480
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: HD74480

How it works

See https://github.com/TomKeddie/tinytapeout-2022-2/blob/main/doc/README.md

How to test

See https://github.com/TomKeddie/tinytapeout-2022-2/blob/main/doc/README.md

IO

10

https://github.com/TomKeddie/tinytapeout-2022-2
https://github.com/TomKeddie/tinytapeout-2022-2/blob/main/doc/README.md

Input Output
0 clock lcd D4
1 reset lcd D5
2 none lcd D6
3 none lcd D7
4 none lcd EN
5 none lcd RS
6 hour set none
7 minute set none

11

3 : Scrolling Binary Matrix display

Figure 3: picture

• Author: Chris
• Description: Display scrolling binary data from input pin on 8x8 SK9822 LED

matrix display
• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: Requires 8x8 matrix SK9822 LED display and 3.3V to 5V

logic level shifter to convert the data and clock signals to the correct voltage for
the display.

How it works

Uses 8x8 matrix SK9822 LED display to scroll binary data as 0s and 1s in a simple font,
from the input pin. Designed in verilog and tested using iCEstick FPGA Evaluation
Kit. Each LED takes a 32 bit value, consisting of r,g,b and brightness.

12

https://github.com/chrisruk/matrixchip
https://github.com/chrisruk/matrixchip/blob/main/README.md

How to test

Need 8x8 matrix SK9822 LED display and level shifter to convert output clock and
data logic to 5V logic.

IO

Input Output
0 clock LED Clock
1 reset LED Data
2 digit none
3 none none
4 none none
5 none none
6 none none
7 none none

13

4 : Power supply sequencer

• Author: Jon Klein
• Description: Sequentially enable and disable channels with configurable delay
• GitHub repository
• HDL project
• Extra docs
• Clock: 12500 Hz
• External hardware: None, but could be useful for GaAs amplifiers or other circuits

which need sequenced power supplies.

How it works

Counters and registers control and track the state of channel activations. The delay
input sets the counter threshold.

How to test

After reset, bring enable high to enable channels sequentially, starting with channel 0.
Bring enable low to switch off channels sequentially, starting with channel 7.

IO

Input Output
0 clock channel 0
1 reset channel 1
2 enable channel 2
3 delay0 channel 3
4 delay1 channel 4
5 delay2 channel 5
6 delay3 channel 6
7 delay4 channel 7

14

https://github.com/loxodes/tt02-submission-loxodes

5 : Duty Controller

• Author: Marcelo Pouso / Miguel Correia
• Description: Increase/Decrease a duty cycle of square signal.
• GitHub repository
• HDL project
• Extra docs
• Clock: 12500 Hz
• External hardware: A 12.5Khz clock signal generator and 2 bottoms for incre-

mental and decremental inputs. An oscilloscope to see the output PWM 1.2KHZ
signal.

How it works

Enter a square clock of 12.5Khz, and change its duty cycle by pressing increase or
decrease bottom. The change will be in steps of 10%. The increase and decrease inputs
have an internal debouncer that could be disabled with the input disable_debouncer
= 1.

How to test

Connect a signal clock (io_in[0]), reset active high signal (io_in[1]), a button to con-
trol the incremental input (io_in[2]) and another button to control the decremental
input(io_in[3]), and finally forced to 0 the disable_debouncer input (io_in[4]). The
output signal will be in the pwm (io_out[0]) port and the negate output in pwm_neg
(io_out[1]). The signal output will have a frecuency of clk/10 = 1.2Khz. When you
press the incremental input bottom then the signal will increment by 10% Its duty cycle
and when you press the decremental input bottom you will see that the output signal
decrement by 10%.

IO

Input Output
0 clock pwm
1 reset pwm_neg
2 increase increase
3 decrease decrease
4 disable_debouncer none
5 none none
6 none none

15

https://github.com/migcorre/tt02-dc

Input Output
7 none none

16

6 : S4GA: Super Slow Serial SRAM FPGA

Figure 4: picture

• Author: Jan Gray
• Description: one fracturable 5-LUT that receives FPGA LUT configuration

frames, serially evaluates LUT inputs and LUT outputs
• GitHub repository
• HDL project
• Extra docs
• Clock: Hz
• External hardware: serial SRAM or FLASH

How it works

The design is a single physical LUT into which an external agent pours a series of
92b LUT configuration frames, four bits per cycle. Every 23 clock cycles it evaluates
a 5-input LUT. The last N=283 LUT output values are kept on die to be used as
LUT inputs of subsequent LUTs. The design also has 2 FPGA input pins and 7 FPGA
output pins.

How to test

tricky

17

https://github.com/grayresearch/tt02-s4ga
https://github.com/grayresearch/tt02-s4ga/blob/main/README.md

IO

Input Output
0 clk out[0]
1 rst out[1]
2 si[0] out[2]
3 si[1] out[3]
4 si[2] out[4]
5 si[3] out[5]
6 in[0] out[6]
7 in[1] debug

18

7 : ALU

• Author: Ryan Cornateanu
• Description: 2bit ALU with a ripple carry adder that has the capability to perform

16 different calculations
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

When 4 bits total are input’d into the ALU, it goes through 3 ripple carries and two
finite state machines that adds to a temporary value that gets included in the basic
ALU calculations

How to test

TODO

IO

Input Output
0 A1 ALU_Out1
1 A2 ALU_Out2
2 B1 ALU_Out3
3 B2 ALU_Out4
4 ALU_Sel1 ALU_Out5
5 ALU_Sel2 ALU_Out6
6 ALU_Sel3 ALU_Out7
7 ALU_Sel4 CarryOut

19

https://github.com/ryancor/tt02-submission-template

8 : The McCoy 8-bit Microprocessor

picture

• Author: Aidan Good
• Description: Custom RISC-V inspired microprocessor capable of simple arith-

matic, branching, and jumps through a custom ISA.
• GitHub repository
• HDL project
• Extra docs
• Clock: None Hz
• External hardware: Any source that allows for 16 GPIO pins. 8 to set the input

pins, 8 to read the output pins.

How it works

This chip contains an opcode decoder, 8-bit ALU, 7 general purpose and 3 special
purpose 6-bit registers, branch target selector, and other supporting structures all con-
nected together to make a 1-stage microprocessor

How to test

To put the processor in a valid state, hold the reset pin high for one clock cycle.
Instructions can begin to be fed into the processor at the beginning of the next cycle
when reset is set low. When the clock signal is high, the PC will be output. When the
clock signal is low, the x8 register will be output. There are example programs in the
testbench folder and a more thourough explaination in the project readme.

IO

Input Output
0 clk out0
1 reset out1
2 in0 out2
3 in1 out3
4 in2 out4
5 in3 out5
6 in4 out6
7 in5 out7

20

https://github.com/AidanGood/tt02-McCoy
https://github.com/cpldcpu/tinytapeout_mcpu5/blob/main/README.md

9 : binary clock

• Author: Azdle
• Description: A binary clock using multiplexed LEDs
• GitHub repository
• HDL project
• Extra docs
• Clock: 200 Hz
• External hardware: This design expects a matrix of 12 LEDs wired to the out-

puts. The LEDs should be wired so that current can flow from column to row.
Optionally, a real time clock or GPS device with PPS output may be connected
to the pps pin for more accurate time keeping. If unused this pin must be pulled
to ground.

How it works

Hours, minutes, and seconds are counted in registers with an overflow comparison. An
overflow in one, triggers a rising edge on the input of the successive register. The
values of each register are connected to the input to a multiplexer, which is able to
control 12 LEDs using just 7 of the outputs. This design also allows use of the PPS
input for more accurate time keeping. This input takes a 1 Hz clock with a rising
edge on the start of each second. The hours[4:0] inputs allow setting of the hours
value displayed on the clock when coming out of reset. This can be used for manually
setting the time, so it can be done on the hour of any hour. It can also be used by
an automatic time keeping controller to ensure the time is perfectly synced daily, for
instance at 03:00 to be compatible with DST.

How to test

After reset, the output shows the current Hours:Minutes that have elapsed since com-
ing out of reset, along wit the 1s bit of seconds, multiplexed across the rows of the
LED array. The matrix is scanned for values: rows[2:0] = 4’b110; cols[3:0] = 4’bM-
MMS; rows[2:0] = 4’b101; cols[3:0] = 4’bHHMM; rows[2:0] = 4’b011; cols[3:0] =
4’bHHHH;
(M: Minutes, H: Hours, x: Unused) Directly out of reset, at 0:00, a scan would be:
rows[2:0] = 4’b110; cols[3:0] = 4’b0000; rows[2:0] = 4’b101; cols[3:0] = 4’b0000;
rows[2:0] = 4’b011; cols[3:0] = 4’b0000;
After one second, at 00:00:01, a scan would be: rows[2:0] = 4’b110; cols[3:0] =
4’b0001; rows[2:0] = 4’b101; cols[3:0] = 4’b0000; rows[2:0] = 4’b011; cols[3:0] =
4’b0000;

21

https://github.com/azdle/binary-clock-asic
https://github.com/azdle/binary-clock-asic

After one hour and two minutes, at 1:02, a scan would be: rows[2:0] = 4’b110; cols[3:0]
= 4’b0110; rows[2:0] = 4’b101; cols[3:0] = 4’b0100; rows[2:0] = 4’b011; cols[3:0] =
4’b0000;
The above can be sped up using the PPS (Pulse Per Second) input, as long as the
PPS pulses are kept to 1 pulse per 2 clock cycles or slower. The hours input can be
tested by applying the binary value of the desired hour. Asserting reset for at least one
clock cycle, and checking the value of hours displayed in the matrix.

IO

Input Output
0 clock col 0
1 reset col 1
2 pps col 2
3 hours_b1 col 3
4 hours_b2 row 0
5 hours_b4 row 2
6 hours_b8 row 3
7 hours_b16 none

22

10 : TinySensor

Figure 5: picture

• Author: Justin Pelan
• Description: Using external hardware photodiodes as inputs, display light inten-

sity on the 7-segment display
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: Breadboard, resistors, photodiodes, specific part# TBD

How it works

Inputs 1-6 will be connected to external photodiodes to read either a ‘0’ or ‘1’, inputs
will be added together and displayed on the 7-segment display

How to test

Dip switches 1-6 can be used instead of external hw to provide inputs, and 7 is used
to switch between Step or Continous sample mode. Throw the switches and the total
number should show up on the 7-segment display

23

https://github.com/justinP-wrk/tt02-TinySensor
https://wokwi.com/projects/347787021138264660

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

24

11 : 16x8 SRAM & Streaming Signal Generator

Figure 6: picture

• Author: James Ross
• Description: Write to, Read from, and Stream 16 addressable 8-bit words of

memory
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

WRITE MODE : Write Enable (WE) pin high while passing 4-bits low data, 4-bits high
data into an 8-bit temporary shift register. After loading data into the temporary shift
register, setting Commit high while passing a 4-bit address will place the register value
into memory. Fast memset, such as zeroing memory, can be performed with Commit
high while passing a new address per clock cycle. READ MODE : While Output Enable
(OE) high, a 4-bit address will place the data from memory into the temporary register
returns 8-bit register to output data interface. STREAM MODE : While WE, OE, and
Commit high, pass the starting stream index address. Then, while WE and OE are
both high, the output cycles through all values in memory. This may be used as a
streaming signal generator.

How to test

After reset, you can write values into memory and read back. See the verilator test-
bench.

25

https://github.com/jar/tt02_sram
https://github.com/jar/tt02_sram/blob/main/README.md

IO

Input Output
0 clk data[0]
1 we data[1]
2 oe data[2]
3 commit data[3]
4 addr[0]/high[0]/low[0] data[4]
5 addr[1]/high[1]/low[1] data[5]
6 addr[2]/high[2]/low[2] data[6]
7 addr[3]/high[3]/low[3] data[7]

26

12 : German Traffic Light State Machine

• Author: Jens Schleusner
• Description: A state machine to control german traffic lights at an intersection.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 1 Hz
• External hardware: An additional inverter is required to generate the pedestrian

red signals from the green output. Hookup your own LEDs for the signals.

How it works

A state machine generates signals for vehicle and pedestrian traffic lights at an inter-
section of a main street and a side street. A blinking yellow light for the side street is
generated in the reset state.

How to test

Provide a clock, hook up LEDs and generate a reset signal to reset the intersection to
all-red. If your leave the reset signal enabled, a blinking yellow light is shown for the
side street.

IO

Input Output
0 clock main street red
1 reset main street yellow
2 none main street green
3 none main street pedestrian green
4 none side street red
5 none side street yellow
6 none side street green
7 none side street pedestrian green

27

https://github.com/JensIMS/tt02-trafficlight
https://wokwi.com/projects/347690870424732244

13 : 4-spin Ising Chain Simulation

Figure 7: picture

• Author: Seppe Van Dyck
• Description: A self-contained physics simulation. This circuit simulates 4 spins

of an Ising chain in an external field.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 20 Hz
• External hardware: None

How it works

It runs the Metropolis-Hastings monte-carlo algorithm to simulate 4 Ising spins in a
linear chain with two external neighbours and an external field. Every monte-carlo step
(10 clock cycles) a random number is created through a 32-bit LFSR and is compared
to an 8-bit representations of the acceptance probability of a random spin flip. Using
the inputs for external neighbors, N of these circuits can be chained together to create
a 4N spin Ising chain.

How to test

The design can be tested by enabling one of the neighbours (input 4 or 5) and leave
all other inputs low, the system will evolve into a ground state with every other spin
pointing up.

28

https://github.com/svd321/tt02-Ising
https://wokwi.com/projects/347592305412145748
README.md

IO

Input Output
0 clock, clock input. segment a, Spin 0.
1 T0, LSB of the 3-bit temperature

representation.
segment b, Spin 1.

2 T1, Middle bit of the 3-bit
temperature.

segment c, Spin 2.

3 T2, MSB of the 3-bit temperature. segment d, Spin 3.
4 N1, Value of neighbour 1 (up/1 or

down/0).
segment e, Neighbour 2.

5 N2, Value of neighbour 2 (up/1 or
down/0).

segment f, Neighbour 1.

6 J, The sign of the NN coupling
constant J.

none

7 H, Value of the coupling to the
external field H.

segment h, MC Step Indicator.

29

14 : Avalon Semiconductors ‘5401’ 4-bit Microprocessor

Figure 8: picture

• Author: Tholin
• Description: 4-bit CPU capable of addressing 4096 bytes program memory and

254 words data memory, with 6 words of on-chip RAM and two general-purpose
input ports. Hopefully capable of more complex computation than previous CPU
submissions.

• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: At the very minimum a program memory, and the required

glue logic. See ˝Example system diagram˝ in the full documentation.

How it works

The chip contains a 4-bit ALU, a 4-bit Accumulator, 8-bit Memory Address Register and
12-bit ˝Destination Register˝, which is used to buffer branch target addresses. It also
has two general-purpose input ports. The instruction set consists of 16 instructions,
containing arihmatic, logical, load/store, branch and conditional branch instruction.
See the full documentation for a complete architectural description.

How to test

It is possible to test the CPU using a debounced push button as the clock, and using
the DIP switches on the PCB to key in instructions manually. Set the switches to

30

https://github.com/89Mods/tt2-AvalonSemi-5401
https://github.com/89Mods/tt2-AvalonSemi-5401/blob/main/README.md

0100_0000 to assert RST, and pulse the clock a few times. Then, change the switches
to 0000_1000 (SEI instruction) and pulse the clock four times. After that, set the
switches to all 0s (LD instruction). Pulse the clock once, then change the switches
to 0001_0100, and pulse the clock three more times. Lastly, set the switches to
0011_1100 (LMH instruction). If done correctly, after two pulses of the clock, the
outputs will read 0101_0000 and two more pulses after that, they will be xxxx_1000
(’x’ means don’t care). This sequence should repeat for as long as you keep pulsing
the clock, without changing the inputs.

IO

Input Output
0 CLK MAR0 / DR0 / DR8 / RR0
1 RST MAR1 / DR1 / DR9 / RR1
2 I0 / D0 MAR2 / DR2 / DR10 / RR2
3 I1 / D1 MAR3 / DR3 / DR11 / RR3
4 I2 / D2 MAR4 / DR4 / F_MAR
5 I3 / D3 MAR5 / DR5 / F_WRITE
6 EF0 MAR6 / DR6 / F_JMP
7 EF1 MAR7 / DR7 / F_I

31

15 : small FFT

• Author: Rice Shelley
• Description: Computes a small fft
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

Takes 4 4-bit signed inputs (real integer numbers) and outputs 4 6-bit complex num-
bers

How to test

after reset, use the write enable signal to write 4 inputs. Read the output for the
computer FFT.

IO

Input Output
0 clock rd_idx_zero
1 reset none
2 wrEn data_out_0
3 none data_out_1
4 data_in_0 data_out_2
5 data_in_1 data_out_3
6 data_in_2 data_out_4
7 data_in_3 data_out_5

32

https://github.com/RiceShelley/tiny-fft

16 : Stream Integrator

• Author: William Moyes
• Description: A silicon implementation of a simple optical computation
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It is possible to generate a pseudorandom bit sequence optomechanically using
four loops of punched paper tape. Each of the four tape loops, labeled A,
B, C, and D, encodes one bit of information per linear position using a tape
specific hole pattern. The patterns are TapeA_0=XOOO, TapeA_1=OXOO,
TapeB_0=OOXO, TapeB_1=OOOX, TapeC_0=OOXX, TapeC_1=XXOO,
TapeD_0=OXOX, TapeD_1=XOXO, where O is a hole, and X is filled. The
pseudorandom sequence is obtained by physically stacking the four tapes together
at a single linear point, and observing if light can pass through any of the four hole
positions. If all four hole positions are blocked, a 0 is generated. If any of the four
holes allows light to pass, a 1 is generated. The next bit is obtained by advancing all
four tapes by one linear position and repeating the observation. By using the specified
bit encoding patterns, the expression (C ? A : B) ^ D is calculated. If all four tapes are
punched with randomly chosen 1 and 0 patterns, and each tape’s length is relatively
prime to the other tape lengths, then a maximum generator period is obtained. This
TinyTapeout-02 minimal project was inspired by the paper tape pseudorandom bit
sequence generator. It implements the core (C ? A : B) ^ D operation electrically
instead of optomechanically. An extra ^ E term is added for ease of use.

How to test

Run through the 32 possible input patterns, and verify the expected output
value is observed. Counting from 00000 to 111111, where IN0 is the LSB
(i.e. Tape A), and IN4 (i.e. Extra E) is the MSB should yield the pattern:
01010011101011001010110001010011.

IO

33

https://github.com/moyesw/tt02-moyesw-StreamIntegrator
https://wokwi.com/projects/346553315158393428

Input Output
0 Value from Tape A Output
1 Value from Tape B none
2 Value from Tape C none
3 Value from Tape D none
4 Extra term XORed with generator output none
5 none none
6 none none
7 none none

34

17 : tiny-fir

• Author: Tom Schucker
• Description: 4bit 2-stage FIR filter
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: Arduino or FPGA

How it works

Multiplies the input by the tap coefficient for each stage and outputs the sum of all
stages

How to test

Load tap coefficients by setting the value and pulsing 2 times, then repeat for second
tap. Change input value each clock to run filter. Select signals change output to debug
00(normal) 01(output of mult 2) 10(tap values in mem) 11(output of mult 1). FIR
output discards least significant bit due to output limitations

IO

Input Output
0 clock fir1/mult0/tap10
1 data0/tap0 fir2/mult1/tap11
2 data1/tap1 fir3/mult2/tap12
3 data2/tap2 fir4/mult3/tap13
4 data3/tap3 fir5/mult4/tap20
5 select0 fir6/mult5/tap21
6 select1 fir7/mult6/tap22
7 loadpulse fir8/mult7/tap23

35

https://github.com/Tschucker/tt02-submission-tiny-fir
https://wokwi.com/projects/347894637149553236
FIR_README.md

18 : Configurable SR

Figure 9: picture

• Author: Greg Steiert
• Description: Configurable gates driving SR and D flip-flops
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: none

How it works

Two configurable gates enable a variety of complex flip-flop functions

36

https://github.com/steieio/tt02-submission-universal-sr
https://wokwi.com/projects/346916357828248146
https://github.com/steieio/tt02-submission-universal-sr/blob/main/README.md

How to test

When SEL and INV are low, the 0 inputs directly drive the flip-flops. A-0 can be
connected to the clock for use with the D flip-flop.

IO

Input Output
0 A-0 MUX-A
1 A-1 XOR-A
2 A-SEL SR-Q
3 A-INV D-Q
4 B-0 MUX-B
5 B-1 XOR-B
6 B-SEL SR-Q#
7 B-INV D-Q#

37

19 : LUTRAM

• Author: Luis Ardila
• Description: LUTRAM with 4 bit address and 8 bit output preloaded with a

binary to 7 segments decoder, sadly it was too big for 0-F, so now it is 0-9?
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

uses the address bits to pull from memory the value to be displayed on the 7 segments,
content of the memory can be updated via a clock and data pins, reset button will
revert to default info, you would need to issue one clock cycle to load the default info

How to test

clk, data, rst, nc, address [4:0]

IO

Input Output
0 clock segment a
1 data segment b
2 reset segment c
3 nc segment d
4 address bit 3 segment e
5 address bit 2 segment f
6 address bit 1 segment g
7 address bit 0 segment pd

38

https://github.com/leardilap/tt02-LUTRAM
https://wokwi.com/projects/347594509754827347
https://github.com/leardilap/tt02-LUTRAM

20 : chase the beat

• Author: Emil J Tywoniak
• Description: Tap twice to the beat, the outputs will chase the beat. Or generate

some audio noise!
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: A button on the tap input, a switch on the mode input,

LEDs on the 8 outputs, and audio output on the first output. Don’t just connect
headphones or speakers directly! It could fry the circuit, you need some sort of
amplifier.

How it works

The second button press sets a ceiling value for the 1kHz counter. When the counter
hits that value, it barrel-shifts the outputs by one bit. When the mode pin isn’t asserted,
the first output pin emits digital noise generated by a LFSR

How to test

Set 1kHz clock on first input. After reset, set mode to 1, tap the tap button twice
within one second. The outputs should set to the beat

IO

Input Output
0 clk o_0 - LED or noise output
1 rst o_1 - LED
2 tap o_2 - LED
3 mode o_3 - LED
4 none o_4 - LED
5 none o_5 - LED
6 none o_6 - LED
7 none o_7 - LED

39

https://github.com/ekliptik/tt02-chase-the-beat

21 : BCD to 7-segment encoder

• Author: maehw
• Description: Encode binary coded decimals (BCD) in the range 0..9 to 7-segment

display control signals
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: Input switches and 7-segment display (should be on the

PCB)

How it works

The design has been fully generated using https://github.com/maehw/wokwi-lookup-
table-generator using a truth table (https://github.com/maehw/wokwi-lookup-table-
generator/blob/main/demos/bcd_7segment_lut.logic.json). The truth table describes
the translation of binary coded decimal (BCD) numbers to wokwi 7-segment display
(https://docs.wokwi.com/parts/wokwi-7segment). Valid BCD input values are in the
range 0..9, other values will show a blank display.

How to test

Control the input switches on the PCB and check the digit displayed on the 7-segment
display.

IO

Input Output
0 w segment a
1 x segment b
2 y segment c
3 z segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

40

https://github.com/maehw/tt02-bcd-7segment-encoder
https://wokwi.com/projects/347688030570545747
https://github.com/maehw/wokwi-lookup-table-generator/blob/main/README.md

22 : A LED Flasher

picture

• Author: Ben Everard
• Description: Select different inputs to generate different LED patterns
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: A LED on each pin

How it works

see How To Test

How to test

input 1 - clock input input 2 - feed NOT LED 1 back into the shift register – this
creates a pattern where every other LED is switched on input 3 - feed 1 into the shift
register if both the first two LEDs are off. This creates a pattern where every third
LED is on input 4 - feed 1 into the shift register if the first three LEDs are off. This
creates a pattern where every fourth LED is on input 5 - feed 1 into the shift register if
all the LEDs are off. This creates a pattern of one light scanning across the LEDs input
6 - set the direction of the shift register input 7 - toggles fixed direction or alternating
direction. If alternating direction is set, the direction of the shift register will flip if all
the LEDs are off input 8 - enable the clock divider

IO

Input Output
0 clock LED1
1 not_1 LED2
2 not_1_2 LED3
3 not_1_2_3 LED4
4 not_all LED5
5 direction LED6
6 toggle_direction LED7
7 clock_div_enable LED8

41

https://github.com/benevpi/tt02-LED-flasher
https://wokwi.com/projects/342981109408072274
https://github.com/benevpi/tt02-LED-flasher/blob/main/README.md

23 : 4-bit Multiplier

• Author: Fernando Dominguez Pousa
• Description: 4-bit Multiplier based on single bit full adders
• GitHub repository
• HDL project
• Extra docs
• Clock: 2500 Hz
• External hardware: Clock divider to 2500 Hz. Seven segment display with dot

led. 8-bit DIP Switch

How it works

Inputs to the multiplier are provided with the switch. As only eight inputs are available
including clock and reset, only three bits remain available for each multiplication factor.
Thus, a bit zero is set as the fourth bit. The output product is showed in the 7 segment
display. Inputs are registered and a product is calculated. As output is 8-bit number,
every 500ms a number appears. First the less significant 4 bits, after 500ms the most
significant. When less significant 4-bits are displayed, the led dot including in the
display is powered on.

How to test

HDL code is tested using Makefile and cocotb. 4 set of tests are included: the single
bit adder, the 4-bit adder, the 4-bit multiplier and the top design. In real hardware,
the three less significant bits can create a number times the number created with the
next three bits. Reset is asserted with the seventh bit of the switch.

IO

Input Output
0 clock segment_1 (o_segments[0])
1 reset segment_2 (o_segments[1])
2 i_factor_a[0] segment_3 (o_segments[2])
3 i_factor_a[1] segment_4 (o_segments[3])
4 i_factor_a[2] segment_5 (o_segments[4])
5 i_factor_b[3] segment_6 (o_segments[5])
6 i_factor_b[4] segment_7 (o_segments[6])
7 i_factor_b[5] segment_dot (o_lsb_digit)

42

https://github.com/kuriousd/tt02-4bit-multiplier

24 : Avalon Semiconductors ‘TBB1143’ Programmable
Sound Generator

• Author: Tholin
• Description: Sound generator with two square-wave voices, one sawtooth voice

and one noise channel. Can also be used as a general-purpose frequency gener-
ator.

• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: Lots of resistors or some other DAC, as well as a micropro-

cessor or microcontroller to program the 1143.

How it works

All tone generators simply take the input clock frequency, multiplied by 256 and divide
it by 16 times the generator’s divisor setting. It does this by using a ring oscillator
to generate a faster internal clock to be able to generate a wider range of tones. Of
course, the outputs are stil only updated as fast as the scan chain allows. The output
is a 6-bit digital sample, but can easily be converted to an analog signal using a resistor
chain. Also uses the leftover output pins as general-purpose outputs.

How to test

It is possible to use the DIP switches to program the generator according to the
documentation. Writing 1101 into address 1, 1010 into address 2, 0000 into address 3
and finally 0001 into address 15 will cause a ~440Hz tone to appear on the output.

IO

Input Output
0 CLK SOUT0
1 RST SOUT1
2 D0 T0
3 D1 T1
4 D2 T2
5 D3 T3
6 A0 LED0

43

https://github.com/89Mods/tt2-avalonsemi-TBB1143
https://github.com/AvalonSemiconductors/tt2-avalonsemi-TBB1143/blob/main/README.md

Input Output
7 WRT LED1

44

25 : Transmit UART

• Author: Tom Keddie
• Description: Transmits a async serial string on a pin
• GitHub repository
• HDL project
• Extra docs
• Clock: 1200 Hz
• External hardware: Serial cable

How it works

Sends an async uart message on severals pins

How to test

Attach a uart receiver to each pins, set the baud rate to 1200 and read the messages

IO

Input Output
0 clock uart_tx_0
1 reset uart_tx_1
2 none uart_tx_2
3 none none
4 none none
5 none none
6 none none
7 none none

45

https://github.com/TomKeddie/tinytapeout-2022-2a

26 : RGB LED Matrix Driver

• Author: Matt M
• Description: Drives a simple animation on SparkFun’s RGB LED 8x8 matrix

backpack
• GitHub repository
• HDL project
• Extra docs
• Clock: 6250 Hz
• External hardware: RGB LED matrix backpack from SparkFun: https://www.sparkfun.com/products/retired/760

How it works

Implements an SPI master to drive an animation with overlapping green/blue waves
and a moving white diagonal. Some 7-segment wires are used for a ‘sanity check’
animation.

How to test

Wire accordingly and use a clock up to 12.5 KHz. Asynchronous reset is synchronized
to the clock.

IO

Input Output
0 clock SCLK
1 reset MOSI
2 none segment c
3 none segment d
4 none segment e
5 none nCS
6 none segment g
7 none none (always high)

46

https://github.com/mm21/tinytapeout2-led-matrix

27 : Tiny Phase/Frequency Detector

• Author: argunda
• Description: Detect phase shifts between 2 square waves.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: Signal generators for square wave inputs.

How it works

This is one of the blocks of a phased locked loop. The inputs are a reference clock and
feedback clock and the outputs are the phase difference on either up or /down pin.

How to test

If the phase of the feedback clock is leading the reference clock, the up signal should
show the phase difference. If it’s lagging, the down signal will show the difference.

IO

Input Output
0 reference clock up
1 feedback clock (inverted) down
2 active-low reset none
3 none none
4 none none
5 none none
6 none none
7 none none

47

https://github.com/argunda/tt02-TinyPFD
https://wokwi.com/projects/348195845106041428
https://ieeexplore.ieee.org/document/278348?subid1=20221113-1837-0613-a274-db851cd8a2cb

28 : Loading Animation

Figure 10: picture

• Author: Andre & Milosch Meriac
• Description: Submission for tt02 - Rotating Dash
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 10000 Hz
• External hardware: Default PCB

48

https://github.com/meriac/loading-animation
https://wokwi.com/projects/348121131386929746
https://github.com/meriac/loading-animation/blob/main/README.md

How it works

Slide switch to external clock. All DIP switches to off. DIP2 (Reset) on to run (Reset
is low-active). By switching DIP3 (Mode) on and setting the sliding switch to Step-
Button, the Step-Button can be now used to animate step by step.

How to test

Slide switch to external clock. All DIP switches to off. DIP2 (Reset) on to run (Reset
is low-active).

IO

Input Output
0 clock segment a
1 reset segment b
2 mode segment c
3 none segment d
4 none segment e
5 none segment f
6 none none
7 none none

49

29 : tiny egg timer

• Author: yubex
• Description: tiny egg timer is a configurable small timer
• GitHub repository
• HDL project
• Extra docs
• Clock: 10000 Hz
• External hardware: no external hw requrired

How it works

Its a simple FSM with 3 states (Idle, Waiting and Alarm) and counters regarding
clk_cycles, seconds and minutes…

How to test

Set the clock to 10kHz, set the wait time you want (in minutes) by setting io_in[7:3],
set the start switch to 1, the timer should be running, the dot of the 7segment display
should toggle each second. If the time is expired, an A for alarm should be displayed.
You can stop the alarm by setting the start switch to 0 again.

IO

Input Output
0 clock segment a
1 reset segment b
2 start segment c
3 wait time in minutes [0] segment d
4 wait time in minutes [1] segment e
5 wait time in minutes [2] segment f
6 wait time in minutes [3] segment g
7 wait time in minutes [4] dot

50

https://github.com/yubex/tt02-tiny_egg_timer

30 : Potato-1 (Brainfuck CPU)

Figure 11: picture

• Author: Pepper Gray (they/them)
• Description: Potato-1 is part of a Brainfuck CPU. It is only the control logic,

i.e. you have to bring your own registers, memory controller and io logic. It is
very simple, hence likely very slow: You could probably run your brainfuck code
on a potato and it would be equally fast, hence the name. The project picture
was generated using DALL·E.

• GitHub repository
• HDL project

51

https://github.com/peppergrayxyz/Potato-1

• Extra docs
• Clock: 12500 Hz
• External hardware: Bidirectional Counter (3x)

– program counter
– data pointer
– value ROM (addressed via programm counter) RAM (addressed via data

pointer, all bytes must be zero after reset)

some TTL gates, e.g. to configure that the value is written to RAM every time it is
changed or the data pointer is changed

How it works

Each rising edge the CU will read in the instruction, zero flag and IO Wait flag and
process it. Each falling edge the output pins will be updated. The output pins indiciate
which action to take, i.e. which registers to increment/decrement. If Put or Get pin
is set, the CU will pause execution until IO Wait is unset. If IO Wait is already unset,
the CU will immidiatly execute the next command without waiting.
Additionaly to the 8 original brainfuck instructions there is a HALT instruction to stop
execution and a NOP instructions to do nothing, also there are unused instruction
(some of them may be used to extend the instruction set in a later itteration).
Instructions: 0000 > Increment the data pointer 0001 < Decrement data pointer 0010
+ Increment value 0011 - Decrement value 0100 . Write value 0101 , Read value 0110
[Start Loop (enter if value is non-zero, else jump to matchin ’]‘) 0111] End Loop
(leave if value is zero, , else jump to matchin’[’) 1000 NOP No Operation 1111 HALT
Halt Execution

How to test

Reset: Set Reset_n=0 and wait one clockycycle
Run: Set Reset_n=1
Simple Test: - all input pins zero - clock cycle - Reset_n high - clock cylce –> PC++
high, all outer outputs are low
Check test/test.py for small scripts to verify the CU logic

52

https://github.com/peppergrayxyz/Potato-1

IO

Input Output
0 Clock PC++
1 Reset_n PC–
2 IO Wait X++
3 Zero Flag X–
4 Instruction[0] A++
5 Instruction[1] A–
6 Instruction[2] Put
7 Instruction[3] Get

53

31 : heart zoe mom dad

• Author: zoe nguyen. taylor
• Description: outputs my name and my age (zoe 4)
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

spells leters

How to test

shift 1 hot value

IO

Input Output
0 Z segment a
1 O segment b
2 E segment c
3 F segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

54

https://github.com/zoent/tt02-zoe-chip

32 : Tiny Synth

picture

• Author: Nanik Adnani
• Description: A tiny synthesizer! Modulates the frequency of the clock based on

inputs, plays a C scale (hopefully).
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 12500 Hz
• External hardware: Not entirely sure yet, it outputs a square wave, I still need

to figure out what to do with it to make it make sound.

How it works

Will come back and write more after my exams!

How to test

Make sure the clock is tied to input 0, whatever frequency you want, play with it!
Then you can play different notes by toggling the other inputs.

IO

Input Output
0 clock Pitch + 1 Octave
1 C Pitch
2 D Pitch - 1 Octave
3 E Pitch - 2 Octave
4 F none
5 G none
6 A none
7 B none

55

https://github.com/nanikgeorge/tt02-submission-template
https://wokwi.com/projects/348255968419643987

33 : 5-bit Galois LFSR

• Author: Michael Bikovitsky
• Description: 5-bit Galois LFSR with configurable taps and initial state. Outputs

a value every second.
• GitHub repository
• HDL project
• Extra docs
• Clock: 625 Hz
• External hardware:

How it works

https://en.wikipedia.org/wiki/Linear-feedback_shift_register#Galois_LFSRs

How to test

1. Set the desired taps using the switches
2. Assert the reset_taps pin
3. Deassert reset_taps
4. Set the desired initial state
5. Assert reset_lfsr
6. Deassert reset_lfsr
7. Look at it go!

• Values between 0x00-0x0F are output as hex digits.
• Values between 0x10-0x1F are output as hex digits with a dot.

8. Did you know there is a secret CPU inside?

IO

Input Output
0 clock segment a
1 reset_lfsr segment b
2 reset_taps segment c
3 data_in1 segment d
4 data_in2 segment e
5 data_in3 segment f
6 data_in4 segment g

56

https://github.com/mbikovitsky/tt02-lfsr

Input Output
7 data_in5 segment p

57

34 : prbs15

• Author: Tom Schucker
• Description: generates and checks prbs15 sequences
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: logic analyzer and jumper leads

How it works

uses lfsr to generate and check prbs15 sequence

How to test

running clk, gnd pin1, set enable high. feedback prbs15 output to check, monitor error
for pulses

IO

Input Output
0 clock clk
1 gnd prbs15
2 enable error
3 check checked
4 none none
5 none none
6 none none
7 none none

58

https://github.com/teaandtechtime/tt02-submission-prbs15
https://wokwi.com/projects/348260124451668562

35 : 4-bit badge ALU

• Author: Rolf Widenfelt
• Description: A 4-bit ALU inspired by Supercon.6 badge
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

finite state machine with combinational logic (in verilog)

How to test

cocotb

IO

Input Output
0 clk none
1 rst none
2 ctl none
3 none cout
4 datain3 alu3
5 datain2 alu2
6 datain1 alu1
7 datain0 alu0

59

https://github.com/rolfmobile99/tt02-submission-template

36 : Pi (�) to 1000+ decimal places

Figure 12: picture

• Author: James Ross
• Description: This circuit outputs the first 1024 decimal digits of Pi (�), including

the decimal after the three. The repository started out as something else, but
after completing the 16x8 SRAM circiut (128 bits), I became curious about
just how much information could be packed into the circuit area. The D flip
flops in SRAM aren’t particularly dense and the circuit has other functionality
beyond information storage. For this demonstration, I needed something without
a logical pattern, something familiar, and something which would exercise all the
LEDs in the seven segment display. The Pi constant was perfect. After a number
of experiments in Verilog, trying the Espresso Heuristic Logic Minimizer tool, the
best results ended up being a large boring block of case statements and letting
the toolchain figure it out. The information limit I found was 1023*log2(10)+1
~= 3,400 bits, after which the toolchain struggled. However, it appears in this
case that the layout is limited by metal, not combinatorial logic. I am interested
to hear about better strategies to do something like this with synthesizable
Verilog.

• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: The seven segment display is used directly.

60

https://github.com/jar/tt02_freespeech
https://github.com/jar/tt02_freespeech/blob/main/README.md

How it works

There is some combinatorial logic which generates the first 1024 decimal digits and
then decodes those digits (and the decimal) to the 7 segment display.

How to test

The clock is used to drive the incremental changes in the display. The reset pin is used
to zero the index.

IO

Input Output
0 clk segment a
1 reset segment b
2 None segment c
3 None segment d
4 None segment e
5 None segment f
6 None segment g
7 None decimal LED

61

37 : Siren

• Author: Alan Green
• Description: Pretty patterns and a siren straight from the 1970s
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 12500 Hz
• External hardware: For the audio output on pin 7, either use an audio amplifier

or, if bravely connecting a speaker directly, place a resistor in series to limit the
current.

How it works

A long chain of D flip flops divides down the clock to produce a range of frequencies
that are used for various purposes. Some of the higher frequencies are used to produce
the tones. Lower frequencies are used to control the patterns of lights and to change
the tones being sent to the speaker. An interesting part of the project is a counter
that counts to 5 and resets to zero. This is used for one of the two patterns of lights,
where the period of pattern is six.

How to test

Connect a speaker to the last digital output pin, the one which is also connected to
the decimal point on the seven segment display. Switch 8 is used to select between
two groups of patterns.

IO

Input Output
0 clock segment a
1 none segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 pattern_select none

62

https://github.com/alanvgreen/tt02-siren
https://wokwi.com/projects/348242239268323922

38 : YaFPGA

• Author: Frans Skarman
• Description: Yet another FPGA
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

TODO

How to test

TODO

IO

Input Output
0 clock output0
1 input1 output1
2 input2 output2
3 input3 output3
4 input4 none
5 config data none
6 config clock none
7 none none

63

https://github.com/TheZoq2/smolfpga

39 : M0: A 16-bit SUBLEQ Microprocessor

Figure 13: picture

• Author: William Moyes
• Description: A capable but slow microprocessor that fits in a very tight space
• GitHub repository
• HDL project
• Extra docs
• Clock: 12500 Hz
• External hardware: A SPI ROM and RAM for user code

How it works

The M0 is a 16-bit, bit serial microprocessor based upon the SUBLEQ architecture.
The only external devices needed for operation are a SPI RAM, SPI ROM, and clock
source. The entire ROM and RAM are available for user code. All registers and
logic are contained within the M0 itself. A transmit UART is included for serial
output. The M0 interoperates with Oleg Mazonka’s HSQ C-compiler for SUBLEQ.
See https://github.com/moyesw/TT02-M0/blob/main/README.md for full details
on the M0.

How to test

Easy check #1 without RAM/ROM chips- Assert Reset High (input1). Hold spi_miso
low (input2). Apply a slow clock to both CLK (input0) and DBG_in (input7). Bring
Reset Low. Examine the inverted clock output on output7 (DBG_OUT), and compare
to clk on in0 to determine io scan chain quality. Examine spi_clk on out3. There

64

https://github.com/moyesw/TT02-M0
https://github.com/moyesw/TT02-M0/blob/main/README.md

should be 40 spi clock pulses at half the clk input frequency, followed by a 2 spi clock
gap where no pulses are present.
Easy check #2 without RAM/ROM chips- Assert Reset high (input2). Hold
spi_miso low. Apply a clock to CLK (input0). Bring Reset Low. Allow the
M0 to reach steady state (504 clock cycles from reset). Observe the UART
transmits 0xFF every 504 input clock cycles on output4. Observe that the CS0
and CS1 are accessed in the pattern: CS1, CS1, CS0, CS1, CS1, CS0. Observe
that the CS0+1 and the spi_mosi pin encodes the following repeating SPI access
pattern: CS1:Rd(03):Addr(FFFE), CS1:Rd(03):Addr(FFFE), CS0:Rd(03):Addr(0000),
CS1:Rd(03):Addr(FFFE), CS1:Wr(02):Addr(FFFE), CS0:Rd(03):Addr(8000). Note
Each access will be accompanied by 16/17 bits of data movement.
Running code with RAM/ROM chips- Connect a programmed SPI ROM to CS1,
and a SPI RAM to CS0. Assert Reset. Power up the ASIC and provide a clock.
Lower Reset, and observe execution. The program’s serial output will appear
on output pin 4 at a baud rate that is one half the input clock frequency. See
https://github.com/moyesw/TT02-M0/blob/main/README.md for information on
external connections, ROM and RAM data formats, instruction set, and compiler
usage.

IO

Input Output
0 clk spi_cs0
1 rst spi_cs1
2 spi_miso spi_clk
3 none spi_mosi
4 none uart_tx
5 none none
6 none none
7 dbg_in dbg_out

65

40 : bitslam

• Author: Jake “ferris” Taylor
• Description: bitslam is a programmable sound chip with 2 LFSR voices.
• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: A 4-bit DAC connected to the four digital output pins.

How it works

bitslam is programmed via its register write interface. A register write is performed by
first writing an internal address register, which selects which register will be written
to, and then writing a value. Bit 1 distinguishes address writes (0) or data writes (1).
Address bits 1-2 address different internal modules: 00 addresses voice 0, 01 addresses
voice 1, and 10 addresses the mixer. Address bit 0 addresses a register in the internal
module. Each voice is controlled by a clock divider and a tap mask for the LFSR state.
The clock divider is at address 0 and controls the rate at which the LFSR is updated,
effectively controlling the pitch. Since bitslam is (expected to be) clocked at 6khz, the
pitch will be determined by 3khz / x where x is the 6-bit clock divider value. Each
voice also contains a 4-bit LFSR tap mask (address 1) which determines which of 4
LFSR bits are XOR’d together to determine the new LFSR LSB. The LFSR is 10 bits
wide and the tap mask bits correspond to positions 1, 4, 6, and 9, respectively. The
mixer has a single register to control the volume of each voice. Bits 0-2 determine
voice 0 volume, and bits 3-5 determine voice 1 volume. A value of 0 means a voice is
silent, and a value of 7 is full volume. Special thanks to Daniel “trilader” Schulte for
pointing out a crucial interconnect bug.

How to test

bitslam is meant to be driven and clocked by an external host, eg. a microcontroller.
The microcontroller should use the register write interface described above to program
the desired audio output (eg. to play a song or sound effects) and 4-bit digital audio
should be generated on the 4 digital out pins.

IO

66

https://github.com/yupferris/bitslam

Input Output
0 clock digital out 0
1 address/data selector digital out 1
2 address/data 0 digital out 2
3 address/data 1 digital out 3
4 address/data 2 none
5 address/data 3 none
6 address/data 4 none
7 address/data 5 none

67

41 : 8x8 Bit Pattern Player

Figure 14: picture

• Author: Thorsten Knoll
• Description: 8x8 bit serial programmable, addressable and playable memory.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: You could programm, address and play the 8x8 Bit Pattern

Player with a breadboard, two clock buttons and some dipswitches on the input
side. Add some LED to the output side. Just like the WOKWI simulation.

How it works

The 8x8 memory is a 64-bit shiftregister, consisting of 64 serial chained D-FlipFlops
(data: IN0, clk_sr: IN1). 8 memoryslots of each 8 bit can be directly addressed via
addresslines (3 bit: IN2, IN3, IN4) or from a clockdriven player (3 bit counter, clk_pl:
IN7). A mode selector line (mode: IN5) sets the operation mode to addressing or to
player. The 8 outputs are driven by the 8 bit of the addressed memoryslot.

How to test

Programm the memory: Start by filling the 64 bit shiftregister via data and clk_sr, each
rising edge on clk_sr shifts a new data bit into the register. Select mode: Set mode
input for direct addressing or clockdriven player. Address mode: Address a memoryslot
via the three addresslines and watch the memoryslot at the outputs. Player mode:
Each rising edge at clk_pl enables the next memoryslot to the outputs.

68

https://github.com/ThorKn/tinytapeout02_pattern_player
https://wokwi.com/projects/341620484740219475

IO

Input Output
0 data bit 0
1 clk_sr bit 1
2 address_0 bit 2
3 address_1 bit 3
4 address_2 bit 4
5 mode bit 5
6 none bit 6
7 clk_pl bit 7

69

42 : XLS: bit population count

• Author: proppy
• Description: Count bits set in the input.
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: LEDs and resistors

How it works

https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel

How to test

Pull up input bits, check that output bits represent the count.

IO

Input Output
0 bit0 count0
1 bit1 count1
2 bit2 count2
3 bit3 count3
4 bit4 count4
5 bit5 count5
6 bit6 count6
7 bit7 count7

70

https://github.com/proppy/tt02-xls-popcount
https://github.com/proppy/tt02-xls-popcount/blob/main/README.md

43 : RC5 decoder

• Author: Jean THOMAS
• Description: Increment/decrement a counter with the press of an IR remote

button!
• GitHub repository
• HDL project
• Extra docs
• Clock: 562 Hz
• External hardware: Connect an IR demodulator (ie. TSOP1738) to the input

pin

How it works

Decodes an RC5 remote signal, increments the counter if the volume up button is
pressed, decrements the counter if the volume down button is pressed

How to test

After reset, point a remote to the IR receiver. Press the volume up button and the
display count should increase.

IO

Input Output
0 clock segment a
1 reset segment b
2 IR demodulator output segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

71

https://github.com/jeanthom/tt02-rc5-receiver

44 : chiDOM

• Author: Maria CHiara Molteni
• Description: Chi function of Xoodoo protected at the first-order by DOM
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Chi function of Xoodoo protected at the first-order by DOM

How to test

Set on all the inputs

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

72

https://github.com/mmolteni-secpat/tinytapeout02_chiDOM
https://wokwi.com/projects/341614374571475540

45 : Super Mario Tune on A Piezo Speaker

Figure 15: picture

• Author: Milosch Meriac
• Description: Plays Super Mario Tune over a Piezo Speaker connected across

io_out[1:0]
• GitHub repository
• HDL project
• Extra docs
• Clock: 3125 Hz
• External hardware: Piezo speaker connected across io_out[1:0]

73

https://github.com/meriac/tt02-play-tune
https://github.com/meriac/tt02-play-tune#readme

How it works

Converts an RTTL ringtone into verilog using Python - and plays it back using differ-
ential PWM modulation

How to test

Provide 3kHz clock on io_in[0], briefly hit reset io_in[1] (L->H->L) and io_out[1:0]
will play a differential sound wave over piezo speaker (Super Mario)

IO

Input Output
0 clock piezo_speaker_p
1 reset piezo_speaker_n
2 none none
3 none none
4 none none
5 none none
6 none none
7 none none

74

46 : Tiny rot13

Figure 16: picture

• Author: Phase Noise
• Description: implements rot13 in the constraints of TT02
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: For basic usage, the carrier board should suffice. An MCU

or FPGA would be required to use this to the fullest extent, and an FPGA with
PCIe would let you build the world’s worst ROT13 Accelerator!

How it works

shifts in low and high nibble to construct an ASCII character, performs rot13, then
outputs. The design uses some registers to store the low and high nibbles before
constructing them into the ASCII character. ROT13 is implemented with a LUT
genetated from Python. Controlled using control lines instead of specific clock cycles.
Any non-alphabetic characters are passed through

75

https://github.com/phasenoisepon/tt02-phasenoisepon
https://github.com/phasenoisepon/tt02-phasenoisepon/blob/main/README.md

How to test

CTL0 and CTL1 are control lines. Let CTL[1:0], 2b00 -> Shift in low nibble on
D[3:0] and set output[7:0]=0x0f, 2b01 -> Shift in high nibble on D[3:0] and set out-
put[7:0]=0xf0, 2b1X -> Shift out S on output[7:0]. Shift in the low and high nibbles
of rot13, then read the result on the next cycle. Internal registers are init to 0, so by
default after a RST, the output will be 0x00 for a single cycle(if CTL=2’b10), otherwise
it will 2’b00 before updating to whatever the control lines set it to. Every operation
effectively sets the output of the next clock cycle. Every complete operation effectively
takes 4 cycles. To test, Set RST, then write 0x1 as the low nibble (clock 0), 0x4 as
the high nibble (clock 1), then set the control lines to output (clock 1). 0x4e should
be read at clock 4, with the output sequence being C=0 out=0x00, C=1 out=0x01,
C=2 out=0x10, C=3 out=0x4e. 0x00 should produce 0x00 while 0x7f should produce
0x7f.

IO

Input Output
0 clock DO0 - LSB of output
1 reset - Resets the system to a clean state DO1
2 CTL0 - LSB of control DO2
3 CTL1 - MSB of control DO3
4 D0 - LSB of input nibble DO4
5 D1 DO5
6 D2 DO6
7 D3 - MSB of input nibble DO7 - MSB of output

76

47 : 4 bit counter on steamdeck

• Author: 13arn
• Description: copy of my tt01 submission, enable first input and press button to

use the counter
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

fsm that uses 1 input to progress abd count from 0 to 3. Other inputs have various
logic to play with

How to test

enable first input so it is on and connected to the button. All other inputs are off.
Press button to progress the fsm.

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

77

https://github.com/13arn/tt02_counter_steamdeck
https://wokwi.com/projects/341541108650607187

48 : Shiftregister Challenge 40 Bit

Figure 17: picture

• Author: Thorsten Knoll
• Description: The design is a 40 bit shiftregister with a hardcoded 40 bit number.

The challenge is to find the correct 40 bit to enable the output to high. With
all other numbers the output will be low.

• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: To test when knowing the correct 40 bit, only a dipswitch

(data), a button (clk) and a LED (output) is needed. Without knowing the
number it becomes the challenge and more hardware might be required.

How it works

Shift a 40 bit number into the chip with the two inputs data (IN0) and clk (IN1). If
the shifted 40 bit match the hardcoded internal 40 bit, then and only then the output
will become high. Having only the mikrochip without the design files, one might need
reverse engineering and/or side channel attacks to fing the correct 40 bit.

How to test

Get the correct 40 bit from the design and shift them into the shiftregister. Each rising
edge at the clk will push the next bit into the register. At the correct 40 bit, the output
will enable high.

78

https://github.com/ThorKn/tinytapeout02_shiftregister_challenge
https://wokwi.com/projects/341516949939814994

IO

Input Output
0 data output
1 clk none
2 none none
3 none none
4 none none
5 none none
6 none none
7 none none

79

49 : TinyTapeout2 4-bit multiplier.

Figure 18: picture

• Author: Tholin
• Description: Multiplies two 4-bit numbers presented on the input pins and out-

puts an 8-bit result.
• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: DIP switches for the inputs, and LEDs on the outputs, to be

able to read the binary result.

80

https://github.com/89Mods/tt2-4x4-multiply

How it works

The multiplier is implemented using purely combinatorial logic. One 6-bit adder and
two 8-bit adders as well as a heap of AND gates are the only used components.

How to test

Input any two numbers on the input ports, and check if the 8-bit result is correct.

IO

Input Output
0 A0 R0
1 A1 R1
2 A2 R2
3 A3 R3
4 B0 R4
5 B1 R5
6 B2 R6
7 B3 R7

81

50 : TinyTapeout2 multiplexed segment display timer.

• Author: Tholin
• Description: Measures time up to 99 minutes and 59 seconds by multiplexing 4

seven-segment displays.
• GitHub repository
• HDL project
• Extra docs
• Clock: 1024 Hz
• External hardware: 4 sevent segment displays, plus some 74-series chips to build

the select logic.

How it works

TODO

How to test

TODO

IO

Input Output
0 CLK A
1 RST B
2 NC C
3 NC D
4 NC E
5 NC F
6 NC G
7 NC SEL

82

https://github.com/89Mods/tt2-multiplexed-counter

51 : XLS: 8-bit counter

• Author: proppy
• Description: Increment output bits
• GitHub repository
• HDL project
• Extra docs
• Clock: 10 Hz
• External hardware: LEDs, pull-up/down resistors

How it works

Implement a simple counter using https://google.github.io/xls/tutorials/intro_to_procs/

How to test

Set the reset bit once, toggle the clock once, unset the reset bit and keep toggling the
clock

IO

Input Output
0 clock count0
1 reset count1
2 none count2
3 none count3
4 none count4
5 none count5
6 none count6
7 none count7

83

https://github.com/proppy/tt02-xls-counter
https://github.com/proppy/tt02-xls-counter/blob/main/README.md

52 : XorShift32

• Author: Ethan Mahintorabi
• Description: XorShift32 random number generator
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

Uses the Xorshift32 algorithm to generate a random 32 bit number. Number is trun-
cated to 3 bits and displayed

How to test

While reset is set, hardware reads in seed value from input bits 2:7 and sets the inital
seed as that binary number. After reset is deasserted, the hardware will generate a new
number every 1000 clock cycles.

IO

Input Output
0 clock segment a
1 reset segment b
2 seed_bit0 segment c
3 seed_bit1 segment d
4 seed_bit2 segment e
5 seed_bit3 segment f
6 seed_bit4 segment g
7 seed_bit5 none

84

https://github.com/QuantamHD/ethan-evan-random-numbers

53 : XorShift32

• Author: Ethan Mahintorabi
• Description: XorShift32 random number generator
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

Uses the Xorshift32 algorithm to generate a random 32 bit number. Number is trun-
cated to 3 bits and displayed

How to test

While reset is set, hardware reads in seed value from input bits 2:7 and sets the inital
seed as that binary number. After reset is deasserted, the hardware will generate a new
number every 1000 clock cycles.

IO

Input Output
0 clock segment a
1 reset segment b
2 seed_bit0 segment c
3 seed_bit1 segment d
4 seed_bit2 segment e
5 seed_bit3 segment f
6 seed_bit4 segment g
7 seed_bit5 none

85

https://github.com/QuantamHD/evan-submission

54 : Multiple Tunes on A Piezo Speaker

• Author: Jiaxun Yang
• Description: Plays multiple Tunes over a Piezo Speaker connected across

io_out[1:0]
• GitHub repository
• HDL project
• Extra docs
• Clock: 10000 Hz
• External hardware: Piezo speaker connected across io_out[1:0]

How it works

Converts an RTTL ringtone into verilog using Python - and plays it back using differ-
ential PWM modulation

How to test

Provide 10kHz clock on io_in[0], briefly hit reset io_in[1] (L->H->L) and io_out[1:0]
will play a differential sound wave over piezo speaker, different tunes can be selected
by different tune_sel inputs

IO

Input Output
0 clock piezo_speaker_p
1 reset piezo_speaker_n
2 tune_sel0 ledout_0
3 tune_sel1 ledout_1
4 none ledout_2
5 none ledout_3
6 none none
7 none none

86

https://github.com/FlyGoat/tt02-play-tune-flygoat
https://github.com/flygoat/tt02-play-tune-fg#readme

55 : clash cpu

• Author: Jack Leightcap
• Description: tiny register machine written in clash
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

poorly

How to test

encode instructions. tick clock.

IO

Input Output
0 instr 5 jump
1 instr 4 unused
2 instr 3 unused
3 instr 2 register 4
4 instr 1 register 3
5 instr 0 register 2
6 rst register 1
7 clock register 0

87

https://github.com/mattvenn/clash-silicon-tinytapeout.git

56 : TinyTapeout 2 LCD Nametag

• Author: Tholin
• Description: Echoes out a predefined text onto a 20x4 character LCD.
• GitHub repository
• HDL project
• Extra docs
• Clock: 100 Hz
• External hardware: A 20x4 character LCD.

How it works

Mostly just contains a ROM holding the text to be printed, and some logic to print
the reset sequence and cursor position changes.

How to test

Connect up a character LCD according to the pinout, set the clock and hit reset. Run
using an extra slow clock, as there is no internal clock divider. It’ll send data to the
display as fast as it’s able to. After that, it should initialize the display and start printing
stuff. Also, connect LEDs to LED0 and LED1 if you want some blinkenlights.

IO

Input Output
0 CLK RS
1 RST E
2 EF0 D4
3 EF1 D5
4 EF2 D6
5 NC D7
6 NC LED0
7 NC LED1

88

https://github.com/89Mods/tt2-lcd-namebadge

57 : UART-CC

• Author: Christina Cyr
• Description: UART Template
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: Arduino

How it works

You can hook this up to an arduino

How to test

Use an arduino

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

89

https://github.com/Christina-Cyr/tt02-submission-UART-CC
https://wokwi.com/projects/347619669052490324
https://github.com/Christina-Cyr/tt02-submission-UART-CC/blob/main/README.md

58 : 3-bit 8-channel PWM driver

• Author: Ivan Krasin
• Description: PWM driver with 8 channels and 8 PWM levels from 0 to 1
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

uses a 3-bit counter to drive PWM on 8 output channels. Each channel is controlled
by a dedicated 3-bit register that specifies its PWM level: 0 means always off, 1 is for
1/7 on, 5 is for 5/7 on and 7 is 7/7 (always on)

How to test

after reset, all output pins will be low. Use set, addr and level pins to set PWM
level=level0+2level1+4level2 on channel=addr0+2addr1+4addr2. The corresponding
pin will start oscillating between 0 and 1 according to the clock and the set level.

IO

Input Output
0 clock out0
1 pset out1
2 addr0 out2
3 addr1 out3
4 addr2 out4
5 level0 out5
6 level1 out6
7 level2 out7

90

https://github.com/krasin/tt02-verilog-3-bit-8-channel-pwm-driver

59 : LEDChaser from LiteX test

• Author: Nick Østergaard
• Description: This is just a small demo of synthezing verilog from LiteX, this

does not include any CPU.
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It just implements LEDChaser from the LiteX LED core demo, where io_in[3:7] is duty
cycle

How to test

Add LEDs on the outputs in a straight line – or probe all signals on a scope and check
that you get a ‘moving’ train of pulses.

IO

Input Output
0 clock led a
1 reset led b
2 pwm_width 0 led c
3 pwm_width 1 led d
4 pwm_width 2 led e
5 pwm_width 3 led f
6 pwm_width 4 led g
7 pwm_width 5 led h

91

https://github.com/nickoe/tinytapeout02-verilog-gds-test

60 : 8-bit (E4M3) Floating Point Multiplier

• Author: Clive Chan
• Description: 8-bit (E4M3) Floating Point Multiplier
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A small mux in front to fill up two 8-bit buffers in halves, which feed the actual 8-bit
multiplier. When ctrl0 is 0, you can clock in 4 bits from data[3:0] into the upper or
lower halves of two buffers according to the values of ctrl[1] and ctrl[2]: - 00 STORE
1 LOWER - 01 STORE 1 UPPER - 10 STORE 2 LOWER - 11 STORE 2 UPPER
The clock is intended for manual use instead of actually being driven by a clock, but
it probably can work. The 8 bits in each of the two buffers are interpreted as an 8-bit
floating point number. From MSB to LSB: - sign bit - exponent[3:0] - mantissa[2:0]
These are interpreted according to an approximation of IEEE 754, i.e. (-1)sign *
2(exponent - EXP_BIAS) * 1.mantissa with the following implementation details /
differences: - EXP_BIAS = 7, analogous to 2**(exp-1) - 1 for all IEEE-defined formats
- Denormals (i.e. exponent == 0) are flushed to zero on input and output - exponent
= 0b1111 is interpreted as more normal numbers instead of NaN/inf, and overflows
saturate to the largest representable number (0bx1111111 = +/- 480.0) - Negative
zero is interpreted as NaN instead. - Round to nearest even is implemented. The
output 8 bits will always display the results of the multiplication of the two FP8’s in
the buffers, regardless of the clock. The module has been verified over all possible
pairs of 8-bit inputs.

How to test

cd src && make

IO

Input Output
0 clock sign
1 ctrl0 exponent
2 ctrl1 exponent

92

https://github.com/cchan/fp8_mul

Input Output
3 ctrl2 exponent
4 data0 exponent
5 data1 mantissa
6 data2 mantissa
7 data3 mantissa

93

61 : Dice roll

• Author: Tholin
• Description: Will roll a random number from 1 - 6 on the 7-segment display, like

a dice.
• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: A 7-segment-display. The one on-board the PCB will work.

How it works

Contains a LSFR for random numbers, that constantly updates no matter if the dice is
rolling or not. Pressing the ’ROLL’ button will play an animation of random numbers
cycling on the display, until settling on a number after a few seconds. The decimal
point will light up when its done rolling.

How to test

Reset, then pulse ’ROLL’ to roll the dice as many time as you like.

IO

Input Output
0 CLK segment a
1 RST segment b
2 ROLL segment c
3 NC segment d
4 NC segment e
5 NC segment f
6 NC segment g
7 NC decimal point

94

https://github.com/AvalonSemiconductors/tt2-diceroll

62 : CNS TT02 Test 1:Score Board

picture

• Author: Bryan Bonilla Garay, Devin Alvarez, Ishaan Singh, Yu Feng Zhou, and
N. Sertac Artan

• Description: First test run of CNS Lab. Displays an 8-bit score from one of two
players as a two-digit hexadecimal value.

• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

Two counters keep track of user scores, which can be updated, and displayed on the
7-segment display.

How to test

Wokvi

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 rst segment d
4 display_digit segment e
5 display_user segment f
6 user segment g
7 mode dot

95

https://github.com/NYIT-CNS/cns001-tt02-submission1
https://wokwi.com/projects/349901899339661908
https://github.com/arta-ns/tt02-cns-submission/blob/main/README.md

63 : CNS002 (TT02-Test 2)

picture

• Author: Bryan Bonilla Garay, Devin Alvarez, Ishaan Singh, Yu Feng Zhou, and
N. Sertac Artan

• Description: First test run of CNS Lab (second design)
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

Apply inputs, get outputs

How to test

Wokvi

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

96

https://github.com/NYIT-CNS/cns002-tt02-submission2
https://wokwi.com/projects/349953952950780498
https://github.com/arta-ns/tt02-cns-submission/blob/main/README.md

64 : Test2

Figure 19: picture

• Author: Shaos
• Description: Testing Flip-Flops
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: logic analyzer

How it works

nothing special - just testing

97

https://github.com/shaos/tt02-submission-shaos
https://wokwi.com/projects/348540666182107731

How to test

change inputs and see outputs :)

IO

Input Output
0 clock segment a
1 D segment b
2 C segment c
3 S segment d
4 R segment e
5 NAND1 segment f
6 NAND2 segment g
7 Muller dot

98

65 : 7-segment LED flasher

• Author: Joseph Chiu
• Description: Drives 7-segment LED display, alternating between NIC and JAC
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: TTO standard switches and 7-segment display

How it works

Master clock is fed through a prescaler with four tap-points which feeds a 4-bit ripple
counter (there are 6 total bits, but the top two bits are discarded). 2:1 muxes are
chained to act like a 8:1 mux for each LED segment position. As the counter runs, this
results in each segment being turned on or off as needed to render the display sequence
(NIC JAC). The highest order bit is used to blink the decimal point on/off.

How to test

IN5 and IN6 selects the clock prescaler. OUT0-OUT7 are the LED segment outputs.

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 Prescale select bit 0 segment f
6 Prescale select bit 1 segment g
7 none segment dp

99

https://github.com/toybuilder/tt02-learn-tinytapeout
https://wokwi.com/projects/341490465660469844

66 : Nano-neuron

• Author: Daniel Burke
• Description: minimal low vector test
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

bare influence field calculation GV open neurons

How to test

clock in reference vector (some inversions), present DUT and get outupt

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

100

https://github.com/drburke3/tt02-nano-neuron
https://wokwi.com/projects/349047610915422802

67 : SQRT1 Square Root Engine

• Author: Davit Margarian (UDXS)
• Description: Computes 4.2 fixed-point square root for any 7-bit integer
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: Optionally, binary to BCD converter for output

How it works

This uses Newton’s method to solve sqrt in 3 cycles.

How to test

Set a 7-bit input value and toggle clock 3 times. After, the output will be correct,
rounded down to the nearest 4th.

IO

Input Output
0 clock frac1
1 i1 frac2
2 i2 whole1
3 i3 whole2
4 i4 whole3
5 i5 whole4
6 i6 none
7 i7 none

101

https://github.com/UDXS/sqrt-tt02

68 : Breathing LED

• Author: argunda
• Description: Use the pwm output to drive an LED and it should look like it’s

breathing.
• GitHub repository
• HDL project
• Extra docs
• Clock: 4000 Hz
• External hardware: Clock source and external LED circuit.

How it works

A triangle wave is generated and used to determine duty cycle of pwm.

How to test

After reset, pwm should automatically be generated. The duty counter is output for
debug purposes.

IO

Input Output
0 clock breathing_pwm
1 reset duty[0]
2 none duty[1]
3 none duty[2]
4 none duty[3]
5 none duty[4]
6 none duty[5]
7 none duty[6]

102

https://github.com/argunda/tt02-breathing-led

69 : Fibonacci & Gold Code

• Author: Daniel Estevez
• Description: This project includes two independent designs: a design that cal-

culates terms of the Fibonacci sequence and displays them in hex one character
at a time on a 7-segment display, and a Gold code generator that generates the
codes used by CCSDS X-band PN Delta-DOR.

• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: No external hardware is needed

How it works

The Fibonacci calculator uses 56-bit integers, so the terms of the Fibonacci sequence
are displayed using 7 hex characters. Since the TinyTapeout PCB only has one 7-
segment display, the terms of the Fibonacci sequence are displayed one hex character
at a time, in LSB order. The dot of the 7-segment display lights up whenever the
LSB is being displayed. On each clock cycle, 4-bits of the next Fibonacci term are
calculated using a 4-bit adder, and 4-bits of the current term are displayed in the 7-
segment display. The 7-segment display is ANDed with the project clock, so that the
digits flash on the display. The Gold code generator computes a CCSDS X-band PN
Delta-DOR Gold code one bit at a time using LFSRs. The output bit is shown on the
7-segment display dot. 6-bits of the second LFSR can be loaded in parallel using 6
project inputs in order to be able to generate different sequences. One of the project
inputs is used to select whether the 7-segment display dot is driven by the Fibonacci
calculator or by the Gold code generator.

How to test

The project can be tested by manually driving the clock using a push button or switch.
Just by de-asserting the reset and driving the clock, the digits of the Fibonacci sequence
terms should appear on the 7-segment display. The output select input needs to be
set to Gold code (high level) in order to test the gold code generator. The load enable
input (active-low), as well as the 6 inputs corresponding to the load for the B register
can be used to select the sequence to generate. The load value can be set in the 6 load
inputs, and then the load enable should be pulsed to perform the load. This can be
done with the clock running or stopped, as the load enable is asynchronous. After the
load enable is de-asserted, for each clock cycle a new bit of the Gold code sequence
should appear in the 7-segment display dot.

103

https://github.com/daniestevez/tt02-gold-fibonacci

IO

Input Output
0 clock {‘segment a’: ‘Fibonacci hex

digit’}
1 output select (high selects Gold

code; low selects Fibonacci LSB
marker) & Gold code load value
bit 0

{‘segment b’: ‘Fibonacci hex
digit’}

2 Fibonacci reset (active-low;
asynchronous) & Gold code load
value bit 1

{‘segment c’: ‘Fibonacci hex
digit’}

3 Gold code load enable (active-low;
asynchronous)

{‘segment d’: ‘Fibonacci hex
digit’}

4 Gold code load value bit 2 {‘segment e’: ‘Fibonacci hex
digit’}

5 Gold code load value bit 3 {‘segment f’: ‘Fibonacci hex digit’}
6 Gold code load value bit 4 {‘segment g’: ‘Fibonacci hex

digit’}
7 Gold code load value bit 5 {‘none’: ‘Gold code output /

Fibonacci LSB digit marker’}

104

70 : tinytapeout2-HELLo-3orLd-7seg

Figure 20: picture

• Author: Rakesh Peter
• Description: HELLo-3orLd Runner on 7 segment Display
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

BCD to 7seg Counter is modified to suit the Simplified SoP equation for each segments.
See the repo for SoP computation.

How to test

All toggle switches in zero position and clock switch on for auto runner. Individual
BCD bits can be toggled using corresponding inputs with clock switch off.

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 dp toggle segment d
4 BCD bit 3 segment e
5 BCD bit 2 segment f
6 BCD bit 1 segment g
7 BCD bit 0 segment dp

105

https://github.com/r4d10n/tt02-HELLo-3orLd-7seg
https://wokwi.com/projects/341609034095264340
https://github.com/r4d10n/tinytapeout-HELLo-3orLd-7seg/blob/main/README.md

71 : Non-restoring Square Root

Figure 21: picture

• Author: Wallace Everest
• Description: Square root for use in RMS calculations
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: Result on 7-segment display {0x0..0xB}

How it works

7-bit input, 4-bit output, unsigned

How to test

Apply unsigned input {0x0..0x7F} to the logic pins

106

https://github.com/navray/tt02-square-root
https://github.com/navray/tt02-square-root/blob/main/README.md

IO

Input Output
0 clk segment a
1 data(0) segment b
2 data(1) segment c
3 data(2) segment d
4 data(3) segment e
5 data(4) segment f
6 data(5) segment g
7 data(6) segment dp

107

72 : GOL-Cell

Figure 22: picture

• Author: Shaos
• Description: Game of Life Cell
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: 8 neighbours and rerouted current state need to go in 2

stages using 5 inputs

How it works

Calculate survive/die decision based on number of neighbours and current state

How to test

Change number of neighbours and see

IO

108

https://github.com/shaos-net/tt02-submission-shaos2
https://wokwi.com/projects/349011320806310484

Input Output
0 clock segment a
1 reset segment b
2 half segment c
3 input 0 or 5 segment d
4 input 1 or 6 segment e
5 input 2 or 7 segment f
6 input 3 or 8 segment g
7 input 4 or 9 inverted clock

109

73 : 7-channel PWM driver controlled via SPI bus

• Author: Ivan Krasin
• Description: PWM driver with 7 channels and 256 PWM levels from 0 to 1
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

uses a 8-bit counter to drive PWM on 7 output channels. Each channel is controlled
by a dedicated 8-bit register that specifies its PWM level: 0 means always off, 1 is for
1/255 on, 5 is for 5/255 on and 255 is 255/255 (always on)

How to test

after reset, all output pins will be low. Use SPI writes with register addresses (0..6)
to set 8-bit PWM levels. The corresponding pin will start oscillating between 0 and 1
according to the clock and the set level.

IO

Input Output
0 clock out0
1 reset out1
2 cs out2
3 sclk out3
4 mosi out4
5 reserved out5
6 reserved out6
7 reserved miso

110

https://github.com/krasin/tt02-verilog-spi-7-channel-pwm-driver

74 : hex shift register

• Author: Eric Smith
• Description: six 40-bit shift registers
• GitHub repository
• HDL project
• Extra docs
• Clock: Hz
• External hardware:

How it works

Six 40-bit shift registers. A multiplexer selects input data or recirulating output data.

How to test

on each clock n, six bits are shifted in, and the six bits that were input at clock n-4
are output

IO

Input Output
0 clk none
1 recirc none
2 data_in[0] data_out[0]
3 data_in[1] data_out[1]
4 data_in[2] data_out[2]
5 data_in[3] data_out[3]
6 data_in[4] data_out[4]
7 data_in[5] data_out[5]

111

https://github.com/brouhaha/tt02-hex-sr
https://github.com/brouhaha/tt02-hex-sr/blob/main/README.md

75 : Ring OSC Speed Test

Rising Edge
Detect

Ring OSC #0

Ring OSC #1

Synchronizer

Synchronizer

Decrementing
Counter

Decrementing
Counter

ring_en0

ring_en1

trig
nrst

scan_clk

sel[2:0]

io_out[7:0]

166MHz
(Nom)

166MHz
(Nom)

Asserted for one
scan_clk period

Expect 6KHz
(T=166uS)

Expect 166*166
~15b

24

24

Figure 23: picture

• Author: Eric Smith
• Description: Make two rings with the same number of stages but measure how

their frequency differs. Measure if they can influence eachother.
• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: Something to sequence nrst, ring_en, trig and the sel bits

How it works

uses a register and some combinational logic

How to test

after reset, assert trigger. Use sel bits to get result

IO

Input Output
0 clock out[0]
1 nreset out[1]
2 trig out[2]

112

https://github.com/ericsmi/tt02-verilog-ring-osc-demo

Input Output
3 sel[0] out[3]
4 sel[1] out[4]
5 sel[2] out[5]
6 ring_en[0] out[6]
7 ring_en[1] out[7]

113

76 : TinyPID

• Author: Aidan Medcalf
• Description: Tiny PID controller with SPI configuration channel, SPI ADC and

DAC driver
• GitHub repository
• HDL project
• Extra docs
• Clock: 1 Hz
• External hardware: One shift register / ADC for PV read, one shift register /

DAC for stimulus output.

How it works

TinyPID reads from a shift register, calculates error and PID values, and writes to a
shift register. All parameters of this process are configurable.

How to test

Shift in config, then shift in PV input and see what happens. There are three bytes of
configuration (setpoint, kp, ki), which are zero on startup.

IO

Input Output
0 clock pv_in_clk
1 reset pv_in_cs
2 none out_clk
3 cfg_clk out_mosi
4 cfg_mosi out_cs
5 none none
6 cfg_cs none
7 pv_in_miso none

114

https://github.com/AidanMedcalf/tt02-pid
https://github.com/AidanMedcalf/tt02-pid/blob/main/README.md

77 : TrainLED2 - RGB-LED driver with 8 bit PWM engine

Figure 24: picture

• Author: cpldcpu
• Description: A RGB-LED driver using the WS2812 protocol
• GitHub repository
• HDL project
• Extra docs
• Clock: at least 6000 Hz
• External hardware: LEDs should be connected to the three LED outputs. The

data input should be driven by a microcontroller, generating input data in a
slowed down WS2812 scheme.

How it works

A fully digital implementation of an RGB LED driver that accepts the WS2812 protocol
for data input. The design is fully clocked, so the timing parameters of the protocol
depend on the clock rate. A pulse between 1 and 5 clock cycles on the input will be
interpreted as a zero, longer pulses as a one. Each driver accepts 3x8=24 bit of input
data to set the brightness of LED1,LED2 and LED3 (R,G,B). After 24 bit have been
received, additional input bits are retimed and forwarded to the data output. After
the data input was idle for 96 clock cycles, the input data is latched into the PWM
engine and the data input is ready for the next data frame. The PWM engine uses a
special dithering scheme to allow flicker free LED dimming even for relatively low clock
rates.

How to test

Execute the shell script ‘run.sh’ in the src folder. This will invoke the test bench.

IO

115

https://github.com/cpldcpu/tt02-TrainLED
https://github.com/cpldcpu/tt02-TrainLED

Input Output
0 clock Dout Driver A
1 reset LED1A
2 Din Driver A LED2A
3 none LED3A
4 none none
5 none none
6 none none
7 none none

116

78 : Zinnia+ (MCPU5+) 8 Bit CPU

picture

• Author: cpldcpu
• Description: A minimal 8 bit CPU
• GitHub repository
• HDL project
• Extra docs
• Clock: high Hz
• External hardware: External program memory and bus demultiplexer is required.

How it works

The CPU is based on the Harvard Architecture with separate data and program mem-
ories. The data memory is completely internal to the CPU. The program memory
is external and is accessed through the I/O. All data has to be loaded as constants
through machine code instructions. Two of the input pins are used for clock and reset,
the remaining ones are used as program input, allowing for an instruction length of 6
bit. The output is multiplexed between the program counter (when clk is ‘1’) and the
content of the main register, the Accumulator. Interpreting the accumulator content
allows reading the program output.

How to test

Execute the shell script ‘run.sh primes’ in the src folder. This will invoke the testbench
with a rom emulator and execute a small program to compute prime numbers.

IO

Input Output
0 clock cpu_out[0]
1 reset cpu_out[1]
2 inst_in[0] cpu_out[2]
3 inst_in[1] cpu_out[3]
4 inst_in[2] cpu_out[4]
5 inst_in[3] cpu_out[5]
6 inst_in[4] cpu_out[6]
7 inst_in[5] cpu_out[7]

117

https://github.com/cpldcpu/tt02-mcpu5plus
https://github.com/cpldcpu/tt02-mcpu5plus

79 : 4 bit CPU

picture

• Author: Paul Campell
• Description: simple cpu
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: sram, latch

How it works

It has a 4-bit accumulator, a 7-bit PC, 2 7-bit index registers and a carry bit. The
main limitations are the 6/8-bit bus - it’s designed to run with an external SRAM and
a 7-bit address latch, code is loaded externally. There are 25 instructions. each 2 or
3 nibbles: - 0 V: add a, V(x/y) - sets C - 1 V: sub a, V(x/y) - sets C - 2 V: or a,
V(x/y) - 3 V: and a, V(x/y) - 4 V: xor a, V(x/y) - 5 V: mov a, V(x/y) - 6 V: movd
a, V(x/y) - 7 0: swap x, y - 7 1: add a, c - 7 2: mov x.l, a - 7 3: ret - 7 4: add
y, a - 7 5: add x, a - 7 6: add y, #1 - 7 6: add x, #1 - 8 V: mov a, #V - 9 V:
add a, #V - a V: movd V(x/y), a - b V: mov V(x/y), a - c H L: mov x, #hl - d H
L: jne a/c, hl if H[3] the test c otherwise test a - e H L: jeq a/c, hl if H[3] the test
c otherwise test a - f H L: jmp/call hl if H[3] call else jmp Memory is 128/256 (128
unified or 128xcode+128xdata) 4-bit nibbles, references are a 3 bit (8 nibble) offset
from the X or Y index registers - the general idea is that the Y register points to an
8 register scratch pad block (a bit like an 8051) but can also be repurposed for copies
when required. There is an on-chip SRAM block for data access only (addressed with
the MSB of the data address) - mostly just to soak up any additional gates. There is
also a 4-deep hardware call stack.

How to test

needs a 7-bit external address latch and SRAM

IO

Input Output
0 clock data_out_0
1 reset data_out_1

118

https://github.com/MoonbaseOtago/tt-cpu

Input Output
2 ram_data0 data_out_2
3 ram_data1 data_out_3
4 ram_data2 write_data_n
5 ram_data3 write_ram_n
6 io_data0 a
7 io_data1 strobe

119

80 : Stack Calculator

Figure 25: picture

• Author: David Siaw
• Description: A stack based 4-bit calculator featuring a 4-bit wide 8 entry deep

stack and 64 bits of random access memory.
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

The stack calculator is a 4-bit calculator. It is meant to be used in a larger circuit
that will handle timing and memory. It is not a processor since it does not contain a
program counter or attempt to access memory on its own. Rather, it accepts inputs
in particular sequences and gives outputs depending on the instructions provided.

120

https://github.com/davidsiaw/tt02-davidsiaw-stackcalc

The stack calculator consists of a 4-bit wide stack that is 8 entries deep. The thing
that makes it a stack calculator is the fact that all operations are performed against
this stack. The user will provide opcodes at every upwards tick of the clock cycle to
instruct the machine on what to do next.
The stack calculator can also save 16 4-bit values using the SAVE and LOAD opera-
tions.
All opcodes are 4 bits long. Some opcodes accept one additional input that define the
operation. Ops take at least 2 cycles to complete and at most 5 cycles.
Opcodes and operands are always 4-bits wide and are applied to the 4 input pins (pins
2-5) and need to be applied before the clock ticks up. In some cases they need to be
held for more than one cycle for them to apply.
All input must be provided in a particular order. Below is a timing diagram that shows
how to apply opcodes to the processor

Timing diagram

CLK ___ ___ ___ ___ ___ ___
__/ ___/ ___/ ___/ ___/ ___/ ___

| | | | | |
| | | | | |

1. ___________ ________________________________
_/ OP CODE ___/ next operation ...

2. _____________ _____________ ________________
_/ OP CODE \/ OPERAND __/ next op...

3. _____________ _____________ ________
_/ OP CODE \/ OPERAND __________/ ...

wait 1 cycle

LEGEND
1. 2-cycle opcode, no operands
2. 4-cycle opcode, 1 operand
3. 5-cycle opcode, 1 operand (PUSH)

The stack machine also features an output register that can be written to using the
OUTL and OUTH operations.
RESET PIN - Please hold the reset pin high and tick the clock at least 4 cycles to
reset the machine.

121

MODE PINS - The input pins 6 and 7 are the mode pin. They can be used to set the
output pins to output specific things depending on their value:

• 00 - show contents of the output register
• 01 - show 7-segment display of the top of the stack
• 10 - show 7-segment display of the value just beneath the top of the stack
• 11 - show the top 2 values on the stack on the low and high nibbles respectively.

The list opcodes are as follows:

• 0x1 PUSH

– Pushes a value to the stack. The value must be provided in the following
cycle.

– 5 cycles - push, push, value, value, wait

• 0x2 POP

– Pops a value from the stack. The value must be provided in the following
cycle.

– 3 cycles - pop, pop, wait

• 0x3 OUTL

– Copies the value on the top of the stack to the lower 4 bits of the output
register.

– 2 cycles - outl, outl

• 0x4 OUTH

– Copies the value on the top of the stack to the high 4 bits of the output
register.

– 2 cycles - outh, outh

• 0x5 SWAP

– Swaps the top two values on the stack.
– 3 cycles - swap, swap, wait

• 0x6 PUSF

– Push a value on the stack depending on the operand. The operand deter-
mines the values pushed on the stack.

– 4 cycles - peek/dupl/flag, =, wait
∗ 0x0 DUPL - pushes a copy of the value on the top of the stack to the

top of the stack
∗ 0x1 PEEK - pushes a copy of the value below the top of the stack to

the top of the stack

122

∗ 0x2 FLAG - pushes the contents of the status register

• 0x7 REPL

– Removes the value at the top of the stack and pushes the value modified
by an unary operation

– 4 cycles - not/neg/incr/decr/shr1/shr2/ror1/rol1, =, wait
∗ 0x0 NOT - bitwise NOT
∗ 0x1 NEG - negative, or 2’s complement
∗ 0x2 INCR - increment
∗ 0x3 DECR - decrement
∗ 0x4 SHR1 - shift right by 1
∗ 0x5 SHL1 - shift left by 1
∗ 0x6 ROR1 - rotate right by 1
∗ 0x7 ROL1 - rotate left by 1

• 0x8 BINA

– Binary operation - removes the top two values of the stack and pushes the
result of a binary operation

– 4 cycles - add/and/not/xor/addc/mull/mulh, wait, wait
∗ 0x0 ADD - add (will set the status register carry flag if result > 15)
∗ 0x1 AND - bitwise AND
∗ 0x2 OR - bitwise OR
∗ 0x3 XOR - bitwise XOR
∗ 0x4 ADDC - add with carry. same as add but +1 if carry flag is set
∗ 0x5 MULL - low nibble from result of multiplication
∗ 0x6 MULH - high nibble from result of multiplication

• 0x9 MULT

– Full multiply of the top two nibbles on the stack. Pushes the high nibble
and then the low nibble to the stack in that order.

– 4 cycles - mult, mult, wait, wait

• 0xA IDIV

– Divide the value below the top of the stack by the value on the top of the
stack. Pushes the remainder and the integer division result in order.

– 4 cycles - idiv, idiv, wait, wait

• 0xB CLFL

– Unset all flags in flag register
– 4 cycles - clfl, clfl

• 0xC SAVE

123

– Writes the value below the top of the stack to the address provided at the
top of the stack.

– 4 cycles - save, save, wait, wait

• 0xD LOAD

– Loads the value at the address provided at the top of the stack.
– 4 cycles - load, load, wait, wait

How to test

The following diagram shows a simple test setup that can be used to test the stack
calculator

VCC
| __|__ pushbutton
+----. .-------------+
| _|_
| schmitt \ /
| trigger O
| inverter |
| __|__ +--> CLK OUT0 -----+
+--. .------------------> RST OUT1 -. |

button +--------+---> IN0 . _|_
+ +---> IN1 . \ / buffer
+ +---> IN2 . |
+ DIP +---> IN3 |
+ switch +---> MODE0 +--> 7 segment
+ +---> MODE1 |
+ +-- +--> LED bar array
+--------+--

.

.

.

By using a schmitt trigger for debounce and an inverter, it is possible to perform a tick
up with a specific DIP switch setting, allowing us to experiment with different kinds of
inputs in sequence.
Using the DIP switch you can also change the MODE pins to debug your stack or
display the output register contents.

124

IO

Input Output
0 clk output0
1 rst output1
2 input0 output2
3 input1 output3
4 input2 output4
5 input3 output5
6 mode0 output6
7 mode1 output7

125

81 : 1-bit ALU

Figure 26: picture

• Author: Leo Moser
• Description: 1-bit ALU from the book Structured Computer Organization:

Andrew S. Tanenbaum
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

126

https://github.com/mole99/tt02-1bit-alu
https://wokwi.com/projects/340318610245288530
https://github.com/mole99/tt02-1bit-alu/blob/main/README.md

How it works

The 1-bit ALU implements 4 different operations: AND, NOT, OR, ADD. The current
operating mode can be selected via F0 and F1. F0=0 and F1=0 results in A AND
B. F0=1 and F1=0 results in NOT B. F0=0 and F1=1 results in A OR B. F0=1 and
F1=1 results in A ADD B. Where A and B are the inputs for the operation. Additional
inputs can change the way of operation: ENA and ENB enable/disable the respective
input. INVA inverts A before applying the operation. CIN is used as input for the full
adder. Multiple 1bit ALUs could be chained to create a wider ALU.

How to test

Set the operating mode via the DIP switches with F0 and F1. Next, set the input
with A and B and enable both signals with ENA=1 and ENB=1. If you choose to
invert A, set INVA to 1, otherwise to 0. For F0=1 and F1=1 you can set CIN as
additional input for the ADD operation. The 7-segment display shows either a 0 or a 1
depending on the output. If the ADD operation is selected, the dot of the 7-segment
display represents the COUT.

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none COUT

127

82 : SPI Flash State Machine

• Author: Greg Steiert
• Description: Implements a state machine stored in an external SPI flash
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: SPI Flash with 0x03 read command and 24bit address

How it works

Inputs and current state are shifted into a SPI flash to look up the next state and
outputs

How to test

Connect a SPI flash device loaded with state machine values

IO

Input Output
0 clock cs
1 reset dout
2 din out0
3 in0 out1
4 in1 out2
5 in2 out3
6 in3 out4
7 in4 out5

128

https://github.com/steieio/tt02-sfsm-wokwi
https://wokwi.com/projects/349228308755382868
https://github.com/steieio/tt02-sfsm-wokwi/blob/main/README.md

Figure 27: picture

129

83 : r2rdac

• Author: youngpines
• Description: small r2r
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: resistors, opamp, and you

How it works

add a resistor ladder on the d flip flop outputs and you get a dac. AND gate is removed,
pin2 is a passthrough

How to test

attach a r2r ladder and a non-inverting op-amp on the output and you can control the
adc output

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

130

https://github.com/youngpines/tt02-youngpines-submission
https://wokwi.com/projects/341571228858843732

84 : Worm in a Maze

• Author: Tim Victor
• Description: Animation demo on seven-segment LED
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 25 Hz
• External hardware:

How it works

A segmented worm travels along a pseudo-random path

How to test

Maximum clock divider will probably be best

IO

Input Output
0 clock LED segment a
1 disable auto-reset LED segment b
2 manual reset LED segment c
3 disable /16 clock divider (“turbo mode”) LED segment d
4 display 2 or 3 worm segments LED segment e
5 none LED segment f
6 none LED segment g
7 none none

131

https://github.com/timvgso/tinatapeworm
https://wokwi.com/projects/348381622440034899

85 : 8 bit CPU

picture

• Author: Paul Campell
• Description: 8-bit version of the MoonBase 4-bit CPU
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: sram, latch

How it works

It has an 8-bit accumulator, a 12-bit PC, 2 13-bit index registers and a carry bit. The
main limitations are the 6/8-bit external bus - it’s designed to run with an external
SRAM and a 12-bit address latch, code is loaded externally. There are 33 instructions.
each 1, 2 or 3 bytes: 0v: add a, v(x/y) - sets C 1v: sub a, v(x/y) - sets C 2v: or a,
v(x/y) 3v: and a, v(x/y) 4v: xor a, v(x/y) 5v: mov a, v(x/y) 6v: movd a, v(x/y) 70:
add a, c 71: inc a 72: swap x, y 73: ret 74: add y, a 75: add x, a 76: add y, #1 77:
add x, #1 78: mov a, y 79: mov a, x 7a: mov b, a 7b: swap b, a 7c: mov y, a 7d: mov
x, a 7e: clr a 7f: mov a, p 8v: nop 9v: nop av: movd v(x/y), a bv: mov v(x/y), a cv:
nop dv: nop ev: nop f0 HL: mov a, #HL f1 HL: add a, #HL f2 HL: mov y, #EEHL
f3 HL: mov x, #EEHL f4 HL: jne a/c, EEHL if EE[4] the test c otherwise test a f5
HL: jeq a/c, EEHL if EE[4] the test c otherwise test a f6 HL: jmp/call EEHL f7 HL:
nop Memory is 4096 8-bit bytes, references are a 3 bit (8 byte) offset from the X or Y
index registers - the general idea is that the Y register points to a register scratch pad
block (a bit like an 8051) but can also be repurposed for copies when required. There
is an on-chip SRAM block for data access only (addressed with the MSB of the data
address) - mostly just to soak up any additional gates. There is also a 3-deep hardware
call stack. Assembler is here: https://github.com/MoonbaseOtago/tt-asm

How to test

needs a 7-bit external address latch and SRAM

IO

Input Output
0 clock data_out_0

132

https://github.com/OneRNG/tt-cpu8

Input Output
1 reset data_out_1
2 ram_data0 data_out_2
3 ram_data1 data_out_3
4 ram_data2 write_data_n
5 ram_data3 write_ram_n
6 io_data0 a
7 io_data1 strobe

133

86 : Pseudo-random number generator

• Author: Thomas Böhm thomas.bohm@gmail.com
• Description: Pseudo-random number generator using a 16-bit Fibonacci linear-

feedback shift register
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

16 flip flops are connected in a chain, and the output of some is XORed together and
fed back into the first flip flop. The outputs that are XORed together are chosen in
such a way as to give the longest possible cycle (2^16-1). All bits being zero is a
special case and is treated separately (all negative outputs of the flip flops are ANDed
together to generate a 1 as feedback). On each clock pulse (pin 1) one new bit is
generated. Setting load_en (pin 3) to HIGH allows the loading of a user defined value
through the data_in pin (pin2). On each clock pulse one bit is read into the flip flop
chain. When load_en (pin 3) is set to LOW the computed feedback bit is fed back
into the flip flops. The outputs of the last 8 flip flops are connected to the output pins.
For each clock pulse a random bit is generated and the other 7 are shifted.

How to test

Set the switch for pin 1 so that the push button generates the clock. Press on it and
see the output change on the hex display. Using pin 2 and 3 a custom value can be
loaded into the flip flops.

IO

Input Output
0 clock random bit 0
1 data_in random bit 1
2 load_en random bit 2
3 none random bit 3
4 none random bit 4
5 none random bit 5
6 none random bit 6

134

mailto:thomas.bohm@gmail.com
https://github.com/tcptomato/tt02-submission-template
https://wokwi.com/projects/341178154799333971
https://github.com/tcptomato/tinytapeout//blob/main/README.md

Input Output
7 none random bit 7

135

87 : BCD to 7-Segment Decoder

• Author: JinGen Lim
• Description: Converts a BCD input into a 7-segment display output
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: 7-segment display

How it works

The IC accepts four binary-coded decimal input signals, and generates a corresponding
7-segment output signal

How to test

Connect the segment outputs to a 7-segment display. Configure the input (IN0:0,
IN1:2, IN2:4, IN3:8). The input value will be shown on the 7-segment display

IO

Input Output
0 input 1 (BCD 1) segment a
1 input 2 (BCD 2) segment b
2 input 3 (BCD 4) segment c
3 input 4 (BCD 8) segment d
4 decimal dot (passthrough) segment e
5 output invert segment f
6 none segment g
7 none segment dot

136

https://github.com/jglim/tt02-bcd-7seg
https://wokwi.com/projects/349546262775726676
https://github.com/jglim/tt02-bcd-7seg/blob/main/README.md

88 : Frequency Counter

• Author: Andrew Ramsey
• Description: Estimates the frequency of an input signal
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: Clock and test signal generator

How it works

‘Diffs’ (XORs) the previous input with the current one to detect any edges (rising or
falling). The edges are then fed into a windowed sum (think moving average, but
without the division step). The summation is then converted into a value from 0-9
based on how close to the maximum frequency it is, where 0 is [0, 10)%, 1 is [10,
20)%, etc. which is displayed on the seven segment.

How to test

Input a clock into the clock pin, toggle reset, and verify that the seven segment reads
0. Then apply a test signal and check that the seven segment displays the expected
relationship between the clock and test signals. The actual frequency of the clock
doesn’t matter as long as timing constraints of the chip are met. 1000 Hz makes for
convenient math and is a good starting point. If needed, the design will loop the input
signal back to the output for a quick sanity check.

IO

Input Output
0 clock segment a
1 reset segment b
2 signal segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none signal

137

https://github.com/ARamsey118/tiny_tapeout_freq_counter

89 : Taillight controller of a 1965 Ford Thunderbird

• Author: Hirosh Dabui
• Description: Asic of a Taillight controller of a 1965 Ford Thunderbird
• GitHub repository
• HDL project
• Extra docs
• Clock: 6250 Hz Hz
• External hardware:

How it works

uses a moore statemachine

How to test

after reset, the statemachine runs into idle mode

IO

Input Output
0 clock r3
1 reset r2
2 left r1
3 right l1
4 hazard l2
5 none l3
6 none none
7 none none

138

https://github.com/splinedrive/thunderbird_taillight_1965

90 : FPGA test

• Author: myrtle
• Description: small mux2 fpga test
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: TODO write up

How it works

TODO write up

How to test

TODO write up

IO

Input Output
0 clock out 0
1 cfg_frameinc out 1
2 cfg_framestrb out 2
3 cfg_mode out 3
4 cfg_sel0_in0 out 4
5 cfg_sel0_in1 out 5
6 cfg_sel0_in2 out 6
7 cfg_sel0_in3 out 7

139

https://github.com/gatecat/tt02-fpga-respin

91 : chi 2 shares

• Author: Maria Chiara Molteni
• Description: Chi function of Xoodoo protected by TI with two shares
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Chi function of Xoodoo protected by TI with two shares

How to test

Set on the last 4 inputs

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

140

https://github.com/mmolteni-secpat/tinytapeout02_chi2shares
https://wokwi.com/projects/341589685194195540

92 : chi 3 shares

• Author: Molteni Maria Chiara
• Description: Chi function of Xoodoo protected by TI with three shares
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Chi function of Xoodoo protected by TI with three shares

How to test

Set on all the inputs

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

141

https://github.com/mmolteni-secpat/tinytapeout02_chi3shares
https://wokwi.com/projects/341608574336631379

93 : Whisk: 16-bit Serial RISC CPU

• Author: Luke Wren
• Description: Execute a simple 16-bit RISC-style instruction set from up to 64

kilobytes of external SPI SRAM.
• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: - An SPI SRAM with 16-bit addresses and support for se-

quential mode accesses, e.g. Microchip 23K256T-I
• A host interface for loading and initialising the SPI SRAM, e.g. Raspberry Pi

Pico
• (optional) Two 74HC595 shift registers for a 16-bit output port
• (optional) A 74HC166 shift register for an 8-bit input port

All of these components will be integrated on the Whisk host board, see the project
GitHub page.

How it works

Whisk uses a single SPI interface for instruction fetch, loads and stores on an external
SPI SRAM. The SPI serial clock is driven at the same frequency as Whisk’s clock input.
The program counter, and the six general purpose registers, are all 16 bits in size, so
up to 64 kilobytes of memory can be addressed.
Internally, Whisk is fully serial: registers and the program counter are read and written
one bit at a time. This matches the throughput of the SPI memory interface, and leaves
more area free for having more/larger general purpose registers as well as leaving room
for expansion on future Tiny Tapeouts.
An optional IO port interface adds up to 16 outputs and 8 inputs, using standard
parallel-in-serial-out and serial-in-parallel-out shift registers. Whisk can read or write
these ports in a single instruction. These can be used for bitbanging external hardware
such as displays, LEDs and buttons.

142

https://github.com/Wren6991/tt02-whisk-serial-processor
https://github.com/Wren6991/tt02-whisk-serial-processor/blob/main/README.md

How to test

You will need a Whisk host board, with memory and the host interface to load it. See
the project GitHub page.

IO

Input Output
0 clk mem_csn
1 rst_n mem_sck
2 mem_sdi mem_sdo
3 ioport_sdi ioport_sck
4 none ioport_sdo
5 none ioport_latch_i
6 none ioport_latch_o
7 none none

143

94 : Scalable synchronous 4-bit tri-directional loadable
counter

Figure 28: picture

• Author: Steven Bos
• Description: This chip offers a scalable n-bit counter design that can be used as

a program counter by setting the next address (eg. for a JMP instruction). It
can work in 3 directions: counting up, down and pause.

• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: no external hardware needed

How it works

See the full documentation, youtube movie and image. Each 1-bit counter has a flip-
flop with count logic component reacting synchronously to the rising edge clock pulse
and a count logic component that computes and setup the behavior for the next rising
edge using async propagation when the level is low.

144

https://github.com/aiunderstand/tt02-4bit-tristate-loadable-counter
https://wokwi.com/projects/341423712597181012
https://github.com/aiunderstand/tt02-4bit-tristate-loadable-counter/blob/main/README.md

How to test

The count state is randomly initialized. Typically the first action is to reset the state to
zero by setting the load switch and have one clock pulse. The second action is setting
the direction by enabling count and setting countDown to true or false (and disable
load). The counter overflows to all 0 when all 1 is reached and count up is set.

IO

Input Output
0 clock output3 (bits [0:3])
1 count (0 = disable/countPause, 1

= enable)
output2

2 load (0 = count mode, 1 = load
mode, overwriting any count logic)

output1

3 countDown (0 = countUp, 1 =
countUp)

output0

4 addr3 (bits[4:7] are used for
loadable count state)

none

5 addr2 none
6 addr1 none
7 addr0 none

145

95 : Asynchronous Binary to Ternary Converter and
Comparator

Figure 29: picture

• Author: Steven Bos
• Description: This chip offers various kinds of conversions and comparisons be-

tween binary encoded ternary and unary encoded ternary in both machine read-
ible output and human readible (7-segment display decimal) output

• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: no external hardware needed

How it works

See the full documentation, youtube movie and image. The chip has four stages.
The opcode stage set the mode of the chip. The second stage convert the input to
output based on the selected mode. The third stage encoded the output to machine or
human based on selected mode. Finally the encoded output is decoded on a 7 segment
display.

146

https://github.com/aiunderstand/tt02-async-binary-ternary-convert-compare
https://wokwi.com/projects/341277789473735250
https://github.com/aiunderstand/tt02-async-binary-ternary-convert-compare/blob/main/README.md

How to test

Set the chip mode [0:3] to 0111. This enables the chip, set unary encoded ternary
channel A conversion and set it to user (decimal) output. Set the input [4:7] to 0010.
The Channel A input using Unary Encoded Ternary is set to 2, which the 7 segment
display also shows. Note that one combination of the two bits is illegal! (see doc)

IO

Input Output
0 output mode (0 = human, 1 =

machine)
segment a (the 7 segment is used
for human readable output,
sometimes using decimals and
sometimes using comparison
symbols, see documentation for
more details)

1 enable (0 = disable, 1 = enable) segment b
2 opcode0 (see table in

documentation for all 4 modes)
segment c

3 opcode1 segment d
4 input channel B pin0 (see table in

documentation what is don’t care
or illegal input for which mode)

segment e

5 input channel B pin1 segment f
6 input channel A pin0 segment g
7 input channel A pin1 segment dot (the dot is an extra

indicator that the output is in
machine format)

147

96 : Vector dot product

• Author: Robert Riachi
• Description: Compute the dot product of two 2x1 vectors each containing 2 bit

integers
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

a := in[0:1], b := in[2:3], c := in[4:5], d := in[6:7] - [a,b,c,d] => [ac * bd]

How to test

set input to 11011010 => which means [11,01]�[10,10] => as ints [3,1]�[2,2] =>
output should be 00001000 => (32) + (12) = 8

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

148

https://github.com/RobertRiachi/tt02-dot-product
https://wokwi.com/projects/348787952842703444

97 : Monte Carlo Pi Integrator

• Author: regymm
• Description: Calculate the value of Pi using the Monte Carlo method
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: External edge counter recommended(funnyblinky is a possible

choice)

How it works

Having random x and y between 0 to 1 and compare the added squares with 1. Using
8-bit fixed-point number.

How to test

SW 00: counter shows total sample points. SW 01: counter shows sample points
inside 1 radius. SW 10: counter 0 and 1 will toggle, 0 for every sample point and 1
for inside point, for use with external counter.

IO

Input Output
0 clock counter 0
1 reset counter 1
2 sw control 0 counter 2
3 sw control 1 counter 3
4 none counter 4
5 none counter 5
6 none counter 6
7 none counter 7

149

https://github.com/regymm/tt02-verilog-mcpi

98 : Funny Blinky

• Author: regymm
• Description: Blink the 8 output LEDs in a funny way.
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

.

How to test

When function switch is turned off, all LEDs will be blinky. When switch is on, it works
as a double 14-bit counter, to be used together with the mcpi module – in this case we
have pause switch and two output control switches to show all bits of the counters.

IO

Input Output
0 clock led 0
1 reset led 1
2 none led 2
3 none led 3
4 switch out ctrl 0 led 4
5 switch out ctrl 1 led 5
6 switch pause led 6
7 switch function led 7

150

https://github.com/regymm/tt02-verilog-funnyblinky

99 : GPS C/A PRN Generator

• Author: Adam Greig
• Description: Generate the GPS C/A PRN sequences PRN1 through PRN32
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: None

How it works

Two LFSRs are constructed per the GPS ICD, and the first is added to selected taps
of the second to produce the selected final PRN sequence.

How to test

With io_in[2:7] set to 2 to select PRN2, reset and then drive the clock; the output
sequence on io_out[2] will start with 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,
1, 1.

IO

Input Output
0 clock G1
1 reset G2
2 prn[0] Selected PRN
3 prn[1] none
4 prn[2] none
5 prn[3] none
6 prn[4] none
7 none none

151

https://github.com/adamgreig/tt02-gpa-ca-prn
https://github.com/adamgreig/tt02-gps-ca-prn

100 : Sigma-Delta ADC/DAC

• Author: Adam Greig
• Description: Simple ADC and DAC
• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware: Comparator, resistor, capacitor

How it works

This project is built on a simple sigma-delta DAC. The DAC is given an n-bit control
word and generates a single-bit digital output where the pulse density is proportional
to that control word. By integrating this pulse train, for example with an RC filter, an
analogue output voltage is produced.
The ADC operates by generating an analogue output voltage which is compared to the
analogue input by an off-chip comparator. The comparator result is used as a digital
input to a simple control loop that adjusts the output voltage so that it tracks the
input signal. The control word for the DAC generating the output voltage is then the
ADC reading. This control word is regularly transmitted as hex-encoded ASCII over a
UART running at the clock rate.
A second dedicated 8-bit DAC is controlled by received words over a UART. Transmit
the control word at 1/10th the clock speed into uart_in, and add a second external
RC circuit to filter dac_out to an analogue voltage.

How to test

Ensure in[0] is clocked. Connect out[0] through a series resistor to both a capacitor to
ground and the non-inverting input of a comparator. Connect the analogue input to
measure to the inverting input, and connect the comparator output to in[2]. Connect
out[1] to a UART receiver at the clock rate and receive ADC readings as hex-encoded
ASCII lines.
Connect out[2] to a second RC filter, and feed one-byte DAC settings to the UART on
in[3] at a baud rate 1/10th the clock. Measure the resulting analogue output.

IO

152

https://github.com/adamgreig/tt02-adc-dac
https://github.com/adamgreig/tt02-adc-dac

Input Output
0 clock adc_out
1 reset uart_out
2 adc_in dac_out
3 uart_in none
4 none none
5 none none
6 none none
7 none none

153

101 : BCD to Hex 7-Segment Decoder

• Author: JinGen Lim
• Description: Converts a 4-bit BCD input into a hexadecimal 7-segment display

output
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: 7-segment display

How it works

The IC accepts four binary-coded decimal input signals, and generates a corresponding
hexadecimal 7-segment output signal. Segment outputs may be inverted with the
INVERT pin to support both common cathode/anode displays.

How to test

Connect the segment outputs to a 7-segment display. Configure the input (IN0:0,
IN1:2, IN2:4, IN3:8). The input value will be shown on the 7-segment display

IO

Input Output
0 input 1 (BCD 1) segment a
1 input 2 (BCD 2) segment b
2 input 3 (BCD 4) segment c
3 input 4 (BCD 8) segment d
4 decimal dot (passthrough) segment e
5 output invert segment f
6 none segment g
7 none segment dot

154

https://github.com/jglim/tt02-bcd-hex7seg-hdl
https://github.com/jglim/tt02-bcd-hex7seg-hdl/blob/main/README.md

102 : SRLD

• Author: Chris Burton
• Description: 8-bit Shift Register with latch and hex decode to display alternating

nibbles
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 16 Hz
• External hardware: Switches and 7-segment display

How it works

Data is inputted to an 8-bit shift register, the data can then be (optionally) latched,
data can be switched around if needed based on shifted data being LSB/MSB first,
cylcles between decoding high/low nibble to show on the 7-segment display.

How to test

Use shiftIn and shiftClk to clock in 8-bits of data. Toggle latch to move data from shift
register to the latch. 7-seg display will show alternating high/low nibbles. If useLatch
is high data comes from the latch otherwise it will be shown ‘live’ as it’s shifted in.
If cycle_display is low the display will cycle between high/low nibble otherwise it will
show the nibble selected by lowHighNibble. mslLsb will switch between showing the
shifted data as MSB or LSB first.

IO

Input Output
0 displayClock segment a
1 shiftIn segment b
2 shiftClk segment c
3 latch segment d
4 cycle_display segment e
5 lowHighNibble segment f
6 useLatch segment g
7 mslLsb High/low nibble indicator

155

https://github.com/burtyb/tt02-srld
https://wokwi.com/projects/349790606404354643

103 : Counter

picture

• Author: Adam Zeloof
• Description: It counts!
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 600 Hz
• External hardware: None

How it works

It counts up or displays an entered number on the seven-segment. A clock divider can
be used to slow down the clock speed.

How to test

Enable the counter (input 7) and the clock divider (input 6) and it should start counting
up. If you disable the counter (input 7) you can enter a number to display manually
in binary (inputs 1-4).

IO

Input Output
0 clock segment a
1 b0 segment b
2 b1 segment c
3 b2 segment d
4 b3 segment e
5 none segment f
6 clock divider enable segment g
7 count enable none

156

https://github.com/azzeloof/tt02-counter
https://wokwi.com/projects/341279123277087315
https://github.com/azzeloof/tt02-counter

104 : 2bitALU

• Author: shan
• Description: 2 bit ALU which performs 16 different operations
• GitHub repository
• HDL project
• Extra docs
• Clock: none Hz
• External hardware:

How it works

Based on the 4 bit opcode, the ALU performs 16 different operations on the 2 bit
inputs A & B and stores the result in 8 bit output ALU_out

How to test

Provide A, B inputs. Select opcode based on the operation to perform. Check output
at ALU_out

IO

Input Output
0 A1 ALU_out
1 A2 ALU_out
2 B1 ALU_out
3 B2 ALU_out
4 opcode ALU_out
5 opcode ALU_out
6 opcode ALU_out
7 opcode ALU_out

157

https://github.com/shan1293/tt02-2bitCPU

105 : A (7, 1/2) Convolutional Encoder

• Author: Jos van ’t Hof
• Description: A (7, 1/2) Convolutional Encoder following the CCSDS 131.0-B-4

standard.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A Convolutional Encoder adds additional bits to a data stream or message that may
later be used to correct errors in the transmission of the data. The specific implemented
encoder is used in space applications and is a half-rate (R = 1/2) code with a constrain
lenght of seven (K = 7). This means that the encoder generates two output bits (called
symbols) for every input bit, and the encoder has m = K - 1 = 6 states.

How to test

Pull the write_not_shift input (IN1) high and set a 6-bit binary input (using IN2
to IN7), for example 0b100110. Provide a clock cycle on the clock input (IN0) to
write the input into the shift register and clear the encoder. Pull the write_not_shift
input (IN2) low to start shifting. Provide 24 clock cycles (2 each for the 6 shift
registers and 6 encoder registers 2x(6+6) = 24). After each clock cycle a 0 or 1
is displayed on the 8-segment display. The encoded output for the input 0b100110
is 0b10111|0010001101000111001. The first 6 bits of the encoded output may be
discared.

IO

Input Output
0 clock segment a
1 write_not_shift segment b
2 shift_input_0 segment c
3 shift_input_1 segment d
4 shift_input_2 segment e
5 shift_input_3 segment f
6 shift_input_4 segment g

158

https://github.com/Josvth/tt02-convolutional-encoder
https://wokwi.com/projects/349729432862196307
https://github.com/Josvth/tt02-convolutional-encoder/blob/main/README.md

Input Output
7 shift_input_5 segment dp (used to indicate clock)

159

106 : Tiny PIC-like MCU

• Author: myrtle
• Description: serially programmed, subset of PIC ISA, MCU
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: A means of shifting in the program (e.g. another microcon-

troller, USB GPIO interface, etc) is required at startup. Once running, it is
standalone.

How it works

Implements a subset of the PIC mid-range ISA (no SFR, no carry, no call/stack), 6
GPRs, 16 program words.

How to test

Program data is shifted in serially. For each program word, shift in {(1 « address), data}
(28 bits total) to prog_data and then assert prog_strobe. Once loaded, deassert (bring
high), reset and the program should start running. GPR 6 is GPI and GPR 7 is GPO

IO

Input Output
0 clock gpo0
1 reset gpo1
2 prog_strobe gpo2
3 prog_data gpo3
4 gpi0 gpo4
5 gpi1 gpo5
6 gpi2 gpo6
7 gpi3 gpo7

160

https://github.com/gatecat/tt02-pic

107 : RV8U - 8-bit RISC-V Microcore Processor

• Author: David Richie
• Description: 8-bit processor based on RISC-V ISA
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

Executes reduced RISC-V based ISA

How to test

Requires interfacing to external memory

IO

Input Output
0 clock serdes output bit 0
1 reset serdes output bit 1
2 serdes input bit 0 serdes output bit 2
3 serdes input bit 1 serdes output bit 3
4 serdes input bit 2 serdes output bit 4
5 serdes input bit 3 serdes output bit 5
6 serdes input bit 4 serdes output bit 6
7 serdes input bit 5 serdes output bit 7

161

https://github.com/browndeer/rv8u

108 : Logic-2G97-2G98

• Author: Sirawit Lappisatepun
• Description: Replication of TI’s Little Logic 1G97 and 1G98 configurable logic

gates.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This design replicates the circuit inside a TI configurable logic gates 74xx1G97 (and by
including an inverted output, it will work as a 74xx1G98 as well). Since there are still
I/O pins left, I included two of these configurables, and also one 74xx1G79 D Flip-Flop
(again, an inverted output means this will also work as a 74xx1G80).

How to test

You could refer to TI’s 1G79/1G80/1G97/1G98 datasheet to test the device according
to the pinout listed below.

IO

Input Output
0 dff_clock dff_out
1 dff_data dff_out_bar
2 gate1_in0 gate1_out
3 gate1_in1 gate1_out_bar
4 gate1_in2 gate2_out
5 gate2_in0 gate2_out_bar
6 gate2_in1 none
7 gate2_in2 none

162

https://github.com/Sirawit7205/tt02-2G97-2G98
https://wokwi.com/projects/341432030163108435

109 : Melody Generator

• Author: myrtle
• Description: plays a melody, preloaded with jingle bells but re-programmable
• GitHub repository
• HDL project
• Extra docs
• Clock: 25000 Hz
• External hardware:

How it works

melody output at output 0

How to test

connect a speaker to output 0, set reload and restart to 1

IO

Input Output
0 clock melody
1 reload none
2 restart none
3 prog_data none
4 prog_strobe none
5 none none
6 none none
7 none none

163

https://github.com/gatecat/tt02-melody-gen

110 : Rotary Encoder Counter

• Author: Vaishnav Achath
• Description: Count Up/Down on the 7-segment accouring to rotary encoder

input
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: Rotary Encoder

How it works

uses a register and some combinational logic

How to test

Provides test mode enable to use input clock and inverted ip/clock as emulated encoder
CLK/Data

IO

Input Output
0 clock segment a
1 reset_rotary_SW segment b
2 rotary_outa segment c
3 rotary_outb segment d
4 test_mode_enable segment e
5 none segment f
6 none segment g
7 none none

164

https://github.com/vaishnavachath/tt02-submission-rotary-encoder-counter

111 : Wolf sheep cabbage river crossing puzzle ASIC
design

Figure 30: picture

• Author: maehw
• Description: Play the wolf, goat and cabbage puzzle interactively.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: Input switches and 7-segment display

How it works

Truth table with the game logic (hidden easter egg). The inputs are the positions of
the farmer, wolf, goat and cabbage. The 7-segment display shows the status of the
game (won or lost).

How to test

Slide the input switches, think, have a look at the 7-segment display.

IO

165

https://github.com/maehw/tt02-wokwi-wolf-goat-cabbage
https://wokwi.com/projects/341614346808328788
https://github.com/maehw/tt02-wokwi-wolf-goat-cabbage/blob/main/README.md

Input Output
0 not connected because it is

typically used for clocked designs
and may be used in the future of
this design

output signal ~E, i.e. the top and
bottom segments light up, when
the game is over due to an
unattended situation on any river
bank side

1 input signal F for the position of
the farmer

output signal ~R i.e. the top-right
and bottom-right segments light
up, to indicate an unattended
situation on the right river bank
(game over)

2 input signal W for the position of
the wolf

output signal ~R i.e. the top-right
and bottom-right segments light
up, to indicate an unattended
situation on the right river bank
(game over)

3 input signal G for the position of
the goat

output signal ~E, i.e. the top and
bottom segments light up, when
the game is over due to an
unattended situation on any river
bank side

4 input signal C for the position of
the cabbage

output signal ~L i.e. the top-left
and bottom-left segments light up,
to indicate an unattended situation
on the left river bank (game over)

5 here be dragons or an easter egg output signal ~L i.e. the top-left
and bottom-left segments light up,
to indicate an unattended situation
on the left river bank (game over)

6 unused here be dragons or an easter egg
7 unused output signal A to light up the

“dot LED” of the 7 segment display
as an indicator that all objects
have reached the right bank of the
river and the game is won! ���

166

112 : Low-speed UART transmitter with limited character
set loading

Figure 31: picture

• Author: maehw
• Description: Low baudrate UART transmitter (8N1) with limited character set

(0x40..0x5F; includes all capital letters in the ASCII table) loading.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 9600 Hz
• External hardware: UART receiver or oscilloscope or logic analyzer (optional)

How it works

The heart of the design is a 13 bit shift register (built from D flip-flops). When a
word has been transmitted, it will be transmitted again and again until a new word is
loaded into the shift register or the output is disabled (the word will keep on cycling
internally).

167

https://github.com/maehw/tt02-wokwi-lowspeed-tiny-uart
https://wokwi.com/projects/341631511790879314
https://github.com/maehw/tt02-wokwi-lowspeed-tiny-uart/blob/main/README.md

How to test

Load a character into the design and attach a UART receiver (or oscilloscope or logic
analyzer) on the output side.

IO

Input Output
0 300 Hz input clock signal (or

different value supported by the
whole

UART (serial output pin, direct
throughput)

1 bit b0 (the least significant bit) of
the loaded and transmitted
character

UART (serial output pin, gated by
enable signal)

2 bit b1 of the loaded and
transmitted character

UART (serial output pin, reverse
polarity, direct throughput)

3 bit b2 of the loaded and
transmitted character

UART (serial output pin, reverse
polarity, gated by enable signal)

4 bit b3 of the loaded and
transmitted character

UART (MSBit, direct throughput);
typically set to 1 or can be used to
sniffing the word cycling through
the shift register)

5 bit b4 of the loaded and
transmitted character

UART (MSBit, reverse polarity,
direct throughput); same usage as
above

6 load word into shift register from
parallel input (IN1..IN5) (1) or
cycle the existing word with
start/stop bits around it (0)

UART (MSBit, gated by enable
signal); typically set to 1 or can be
used to sniffing the word cycling
through the shift register)

7 {‘output enable (for gated output
signals)’: ‘1 output is enabled, 0
output is disabled (permanently
set to HIGH/1)’}

UART (MSBit, reverse polarity,
gated by enable signal); same
usage as above

168

113 : Rotary encoder

Figure 32: picture

• Author: Wim Dams
• Description: Reads in a (incremental) rotary encoder and shows the result on

the seven-segment display
• GitHub repository
• HDL project
• Extra docs
• Clock: 10000 Hz
• External hardware: Rotary encoder connected to pin A and pin B

How it works

The rotary pins are sampled every clock cycle. If a rising edge is detected on pin A,
the 4 bit counter will be incremented/decremented depending on pin B. The counter
is put on the seven segment display and a debounce time is started (125 clk cycles)

How to test

After reset, turn the rotary encoder and the counter should increment/decrement as
you turn

IO

Input Output
0 clock segment a
1 reset segment b
2 Rotary encoder pin A (sometimes marked as CLK) segment c
3 Rotary encoder pin B (sometimes marked as DT) segment d

169

https://github.com/wimdams/tt02-rotary-encoder

Input Output
4 none segment e
5 none segment f
6 none segment g
7 none none

170

114 : FROG 4-Bit CPU

• Author: ChrisPVille
• Description: The FROG is an extremely minimal load-store 4-bit CPU
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: An SRAM/ROM like memory containing instructions should

be connected to addr/wcyc/data_in

How it works

The CPU addresses external memory on its addr pins and executes/interprets data on
the data_in pins

How to test

Set data_in to 0x8 (NOP) and observe the addr bus count upward as the CPU executes
Instructions

IO

Input Output
0 clock addr[0]
1 reset_p addr[1]
2 data_in[0] addr[2]
3 data_in[1] addr[3]
4 data_in[2] addr[4]
5 data_in[3] addr[5]
6 none addr[6]
7 fast - zero wait state memory mode write memory cycle

171

https://github.com/ChrisPVille/tt02-FROG4bitCPU
README.md

115 : Configurable Gray Code Counter

• Author: Eric Swalens
• Description: A configurable counter driven by 2-channel Gray code
• GitHub repository
• HDL project
• Extra docs
• Clock: 5000 Hz
• External hardware: A source of Gray code; filtering and Schmitt triggers may be

required if a mechanical encoder is used.

How it works

The module is an 8-bit configurable counter modified by Gray code (aka 2-bit quadra-
ture code); it aims at easing the integration of incremental rotary encoders into projects.
The counter value is given as a (truncated to 5 bits) parallel or (8 bits, no parity, 1
stop bit) serial UART output. Other outputs include the “direction” of progression
of the Gray code, and a PWM signal for which the duty cycle is proportional to the
counter value.
Some basic (optional) debouncing logic is included; any pulse inverting the direction
must be followed by a second pulse in the same direction before the change is regis-
tered.
Additional features include support for wrapping (the counter rolls over at the minimum
and maximum value), and a “gearbox” that selects the X1 (1 pulse per 4 transitions),
X2 (2 pulses) or X4 (4 pulses) output of the Gray code decoder driving the counter
depending on the speed at which the channels change; this can provide some form of
“acceleration”. The initial and maximum values of the counter can also be set.
Encoders with twice the number of detents compared to the number of pulses per
round (e.g. 24 detents / 12 PPR) are supported by setting the input “update on X2”
high or forcing it with the configuration parameter.
After reset the module is configured as a basic 5-bit counter which can then be further
modified by sending a 32-bit word over the SPI interface. This word sets the following
options (reset value between parentheses):

• gearbox enable (0)
• debounce logic enable (1)
• wrap enable (0)
• Gray code value for X1 (0)

172

https://github.com/swalense/tt02-graycode_counter
https://github.com/swalense/tt02-graycode_counter#readme

• force update on X2 (0), this overrides a low value at the input pin (the value for
X1 selects which transitions are taken into consideration)

• gearbox timer value (n/a, gearbox is disabled)
• counter initial value (0)
• counter maximum value (31)

See link to GitHub for possible errata.

How to test

For a basic test connect a device generating Gray code and retrieve the counter value
at the parallel or serial outputs with a microcontroller or other circuitry.
To further configure the module send some configuration word over the SPI interface
(mode 0, MSB first, CS is active low). The 32-bit configuration word is constructed a
follows (bits between brackets):

• [24:31] maximum counter value
• [16:23] initial counter value after configuration
• [8:15] gearbox timer
• [6:7] unused
• [5:5] force update on X2
• [3:4] X1 value
• [2:2] debounce enable
• [1:1] wrap enable
• [0:0] gearbox enable

The gearbox is implemented with a 5-bit threshold value; it is incremented by the X4
output of the decoder and decremented by a timer (this threshold is then divided by
8 to select the gear, giving 0: X1, 1: X1, 2/3: X4). Therefore the result depends on
the clock frequency and the speed at which the Gray code transitions. The gearbox
timer is exposed to enable tuning the interval between two updates by the timer. For
a rotary encoder with detents one can suggest using clock_hz / (detents x transitions
- 16) as a starting point to determine a suitable value, where detents is the number
per turn (e.g. 24) and transitions is the number per detent (e.g. 4). That is, 62 for a
common 24 detents / 24 PPR encoder.

173

The 8-N-1 UART serial output shifts 1 bit out at each clock cycle. The receiving serial
port therefore needs to be configured at the same speed as the clock.
The PWM frequency is derived from the maximum counter value. It might be unsuit-
able for visual feedback, e.g. driving a LED, for large values with a low clock frequency
as the LED will appear blinking.

IO

Input Output
0 clock UART serial output
1 reset PWM signal
2 channel A direction
3 channel B counter bit 0
4 update on X2 counter bit 1
5 SPI CS counter bit 2
6 SPI SCK counter bit 3
7 SPI SDI counter bit 4

174

116 : Baudot Converter

picture

• Author: Arthur Hazleden
• Description: This circuit will convert 5-bit Baudot from a teletype machine to

8-bit ASCII.
• GitHub repository
• HDL project
• Extra docs
• Clock: 9600 Hz
• External hardware: “An optoisolaor is required at the Baudot input (IN1). A

USB serial adapter or RS232 converter should be connected at the ASCII output
(OUT0). Hopefully the onboard clock can drive the ASCII UART at 9600 and
lower baud. Baudot uses 45.5 Hz and a 100x clock divider drives the UART.
Since the TTY machines are not always on spec, drive IN1 with an adjustable
4550 Hz source. Baudot Out Ready and baudot[4:0] are available for debugging
purposes.”

How it works

Two UARTs, a clock divider and a conversion ROM

How to test

“Provide 9600Hz at IN0 and 5000Hz at IN1. This sets up a 50 baud input and 9600
baud output. Us a PC set for 50 5n1 to drive the Baudot input. Check the baudot[4:0]
pins and baudot_ready(OUT1) if the ASCII output isn’t making sense.”

IO

Input Output
0 ascii clock at 8x desired baudrate ASCII serial output at 9600 baud
1 baudot clock at 100x desired baudrate Baudot UART output byte ready
2 baudot input, should be held high when line is idle but connected none
3 none Baudot bit 0
4 none Baudot bit 1
5 none Baudot bit 2
6 none Baudot bit 3
7 none Baudot bit 4

175

https://github.com/Luthor2k/tt02-baudot
https://github.com/Luthor2k/tt02-baudot/blob/main/README.md

117 : Marquee

• Author: Christopher ‘ctag’ Bero
• Description: Scrolls ‘ctag’ across the 7seg.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 2 Hz
• External hardware: NA/Button

How it works

Uses two flip-slops to get a 4-state machine, and then just activates LEDs from the
outputs.

How to test

Set clock to button and click through.

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

176

https://github.com/ctag/tt02-submission-ctag
https://wokwi.com/projects/349886696875098706

118 : channel coding

• Author: Asma Mohsin
• Description: Convolutional coding is widely used in modern digital communica-

tion systems.We often get encoded data by using different polynomials having
same constraint lengths (K).

• GitHub repository
• HDL project
• Extra docs
• Clock: 6000 Hz
• External hardware:

How it works

We have two polynomials of 4th order and a shift register of 5 bits. we take input data
of a single bit and put it in shift register on each clock edge as long as valid data bit is
asserted. after this codeword is calculated by taking xor of the and of polynomial and
shift register

How to test

apply clk,reset ,data valid and input data and do calculations to see if output is equal
to the desired one

IO

Input Output
0 clock encoded data
1 reset none
2 data valid none
3 data input none
4 none none
5 none none
6 none none
7 none none

177

https://github.com/AsmaMohsin1507/tt02-channel-coding
https://github.com/AsmaMohsin1507/tt02-channel-coding/blob/cccf2f01c80024d59eef60c292b57c8786c9e495/README.md

119 : Chisel 16-bit GCD with scan in and out

• Author: Steve Burns
• Description: Simple chisel based design based on Knuth’s BinaryGDC algorithm

using scan chains for I/O.
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

With the ld signal true, the u_bit and v_bit inputs are used to scan the n-bit
numbers into the block. Simulataneously, the high-order bit of the u register is scanned
out, allowing access to the result of the last computation. Upon lowering the ld signal,
the Euclid iteration starts. When done, the done signal is raised.

How to test

Chiseltest enabled tests. Go to chisel and run sbt test.

IO

Input Output
0 clock z_bit
1 reset done
2 ld none
3 u_bit none
4 v_bit none
5 none none
6 none none
7 none none

178

https://github.com/stevenmburns/tt02-scannable-gcd

120 : Adder with 7-segment decoder

Figure 33: picture

• Author: cy384
• Description: Four bit adder with binary to 7 segment display decoder
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: No external hardware needed.

How it works

Four full adders with carry feeding into a somewhat hairy binary to seven segment
display decoder.

How to test

Use the DIP switches to enter two four bit binary numbers. Display of numbers greater
than nine is questionable. The decimal point of the display is carry (i.e. a sum over
16).

IO

179

https://github.com/cy384/tt02-submission-template
https://wokwi.com/projects/341546888233747026

Input Output
0 first number bit 0 (least significant) segment a
1 first number bit 1 segment b
2 first number bit 2 segment c
3 first number bit 3 segment d
4 second number bit 0 (least significant) segment e
5 second number bit 1 segment f
6 second number bit 2 segment g
7 second number bit 3 segment DP (carry bit)

180

121 : Hex to 7 Segment Decoder

• Author: Randy Glenn
• Description: Displays an input 4-bit value as a hex digit
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A modern take on the classic TIL311

How to test

after reset, the counter should increase by one every second

IO

Input Output
0 latch segment a
1 blank segment b
2 data 0 segment c
3 data 1 segment d
4 data 2 segment e
5 data 3 segment f
6 decimal segment g
7 none decimal

181

https://github.com/rglenn/tt02-rglenn-hex-to-7-seg

122 : Multiple seven-segment digit buffer

picture

• Author: Zach Mason
• Description: Storage and variable speed readback segment digits
• GitHub repository
• HDL project
• Extra docs
• Clock: 6250 Hz
• External hardware: None

How it works

Stores 12 seven-segment display digits in registers in write mode. In read mode, the
values are sequentially displayed back, with a variable cycle rate. The segment inputs
are 4-3 multiplexed and a clock divider is used to slow down the output rate. The user
is responsible for tracking how many digits have been set.

How to test

First set in1-in7 low, and then reset by toggling in1 high then low. In read mode (in2
high), the decimal point will be illuminated and the first 4 segments can be changed
with in4-in7. When the desired configuration is set, sel (in3) can be switched high and
the remaining 3 segments can be set with in4-in6. Once the desired configuration is
set, you can move to the next digit by bringing sel (in3) low. Alternatively, read mode
can be entered by bringing RW (in2) low. At this point, the stored values will begin
reading sequentially at a rate given by in4-in7. The base period is about 81.9ms, with
in4-in7 specifying the multiplication factor for the real display rate. The slowest period
is about 2.62s, where in7-in4 are all high. If in read mode, bringing in3 low will stop
the cycling and keep displaying the current digit. This can be useful for changing a
single digit since one could cycle through at a slow rate to find the target, enter write
mode, change the stored digit, and then exit back to read mode.

IO

Input Output
0 clock segment a
1 reset segment b
2 RW mode segment c

182

https://github.com/zymason/tt02-zymason

Input Output
3 sel, read_clk_en segment d
4 pin0, clkspd0 segment e
5 pin1, clkspd1 segment f
6 pin2, clkspd2 segment g
7 pin3, clkspd3 segment dp

183

123 : LED Chaser

• Author: Bradley Boccuzzi
• Description: Push the button to fill in segments of the LED display, they will

continue to shift and fill in the display until the button is released.‘
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

Input is button to input of shift register. Each segment of the 7 segment display is
connected to an output of the shift register.

How to test

Push switch number 8 to watch the LEDs fill in

IO

Input Output
0 clock segment a
1 none segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 shift register input none

184

https://github.com/DaveyPocket/chaser_tt2
https://wokwi.com/projects/341178481588044372

124 : Rolling Average - 5 bit, 8 bank

• Author: Kauna Lei
• Description: 5bit moving average
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: gpios to connect with io_in[7:2] and to read io_out[4:0]

How it works

Using Shift Register Line and Rolling Sum Trick

How to test

Clock in the high 5 bits of io_in (io_in[7:3]) with the i_data_clk (io_in[2]) (active
high), and read output on io_out[4:0]

IO

Input Output
0 clock ra_out[0]
1 reset ra_out[1]
2 i_data_clk ra_out[2]
3 i_value[0] ra_out[3]
4 i_value[1] ra_out[4]
5 i_value[2] 0
6 i_value[3] 0
7 i_value[4] 0

185

https://github.com/klei22/Rolling-Average

125 : w5s8: universal turing machine core

• Author: Andrew Foote
• Description: State transition logic for a 5-state, 8-symbol universal turing ma-

chine
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

Uses combinational logic to implements a (state, symbol) -> (state, symbol, direction)
transition function

How to test

Provide state & symbol as inputs, and the module should output the state, symbol,
and direction according to the table in test.py.

IO

Input Output
0 clock none
1 state_in[0] next_direction
2 state_in[1] new_sym[0]
3 state_in[2] new_sym[1]
4 sym_in[0] new_sym[2]
5 sym_in[1] new_state[0]
6 sym_in[2] new_state[1]
7 mode new_state[2]

186

https://github.com/andars/tt02-universal-turing-machine-w5s8
https://github.com/andars/tt02-universal-turing-machine-w5s8#readme

126 : Test3

Figure 34: picture

• Author: Shaos
• Description: Binary Coded Ternary Test
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

187

https://github.com/ternary-info/tt02-submission-shaos3
https://wokwi.com/projects/349255310782759507

How it works

Should work as ternary selector

How to test

Set inputs, read outputs

IO

Input Output
0 C+ segment a
1 C- segment b
2 N+ segment c
3 N- segment d
4 O+ segment e
5 O- segment f
6 P+ segment g
7 P- dot

188

127 : Seven Segment Clock

picture

• Author: Greg Davill
• Description: Logic to drive 6 external 74hct595’s that in turn drive 7 segment

displays. The displays form a digital clock.
• GitHub repository
• HDL project
• Extra docs
• Clock: 128Hz Hz
• External hardware: 6x 74hct595’s, 6x 7segment

How it works

TBD

How to test

TBD

IO

Input Output
0 clock sclk
1 reset latch
2 minute_up data
3 hour_up none
4 none none
5 none none
6 none none
7 none none

189

https://github.com/gregdavill/tt02-clock

128 : serv - Serial RISCV CPU

picture

• Author: Greg Davill
• Description: An award winning RISCV CPU!
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: tbd

How it works

This project contains a 96bit serial scanchain, and the core of the serv CPU. Signals
present on the scanchain are a wishobne bus and the native registerfile interface. As
there is not enough room inside the TinyTapeout project area to fit RAM/registerfiles
these have to be implemented externally. In theory just a bit of custom code running
on caravel will be enough to get the serv core running.

How to test

tbd

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

190

https://github.com/gregdavill/tt02-serv
https://github.com/olofk/serv/tree/main

129 : 4:2 Compressor

• Author: saicharan0112
• Description: A Basic 4:2 compressor which contains 4 inputs and 1 carry_in bit

which compresses to 2 outputs and 1 carry_out bit
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It compressors 4 inputs to 2 inputs. This is used to compress partial products inside
multipliers

How to test

Follow the truth table of 4:2 compressor online with 4 inputs and carry_in bit and
observe the 2 outputs and carry_out bit

IO

Input Output
0 a1 is one of the 4 main input bits o1 is the one of the 3 compressed

output bits
1 a2 is one of the 4 main input bits o2 is the one of the 3 compressed

output bits
2 a3 is one of the 4 main input bits cout is the carry_out bit
3 a4 is one of the 4 main input bits none
4 cin is the carry_in input bit none
5 none none
6 none none
7 none none

191

https://github.com/saicharan0112/tt02-submission-template
https://wokwi.com/projects/349813388252021330

130 : PS2 keyboard Interface

• Author: Tanish Khanchandani
• Description: PS2 keyboard interface to enter charecters into a computer. Use the

PS2 hex scan codes (https://techdocs.altium.com/display/FPGA/PS2+Keyboard+Scan+Codes)
to enter hex codes and it will send the letter to your computer.

• GitHub repository
• Wokwi project
• Extra docs
• Clock: 6000 Hz
• External hardware: 3.3V to 5V logic level converter

How it works

Most likely does not work. Takes in keyboard hex scan codes and sends data to your
PC. The chip emulates a key being pressed down and released. (link to protocol
- https://techdocs.altium.com/display/FPGA/PS2_W+-+Transmission+Protocols).
The logic puts data into a parallel to serial interface and sends the data with some of
the other protocol necessities to simulate a key being pressed and released.

How to test

Select clock with input 1. Set the first hex character using inputs 2-5. Set input 6 to
1. Set input 6 back to 0. Set the second hex character using inputs 2-5 and set input
7 to 1 and then back to 0. Set input 8 to 1 to send the data.

IO

Input Output
0 clock NC
1 hex Bit 1 NC
2 hex Bit 2 NC
3 hex Bit 3 NC
4 hex Bit 4 NC
5 Set 1st hex NC
6 set 2nd hex Clock
7 Enable to send Data

192

https://github.com/tanishnk/Tiny-Tapeout-2-submission-Tanish-k
https://wokwi.com/projects/349934460979905106

131 : Hello Generator

• Author: Skyler Saleh
• Description: Flashes ‘H-E-L-L-O’ on the 7 segment display
• GitHub repository
• HDL project
• Extra docs
• Clock: 2048 Hz
• External hardware: None

How it works

An input clock signal is fed into a configureable clock divider which generates a slower
clock every 1 to 2^15 cycles (depending on configuration). The rate of the clock
divider is configured using the dipswitches under the equation of output_clock_hz
= input_clock_hz/(2^clock_divider_ratio[3:0]) This slow clock increments a 3 bit
counter which is used to index a built in character generator ROM, whose outputs
will be used to drive the segment a,b,c,d,e,f,g on the 7 seg display. The character
rom contains bits to light up the segments as ‘H-E-L-L-O- - -’ The outputs of the
character rom are anded with (slow_clock|flash_enable) to cause the display to blank
between letters when flashing is enabled. A debug harness(accessed by setting the
debug_mode dip switch to 1) allows the character generator rom to be indexed using
dip switch settings, and for the slow clock to be source from dip switches instead of
the clock divider.

How to test

Configure input clock rate as 2048hz on the first input. Set dip_switch[1] to 1 Set
dip_switch[2] to 1 Set dip_switch[3] to 0 Set dip_switch[4] to 1 This will configure
the input clock divider to generate a 1Hz slow clock from the 2048hz input clock. Set
dip_switch[5] to 0 Set dip_switch[6] to 0 Set dip_switch[7] to 0 This will disable the
test harness and setup normal operation. Connect a 7 segment display to outputs, and
the device should flash ‘H-E-L-L-O’ followed by 3 letters worth of blank display.

IO

Input Output
0 clock segment a

193

https://github.com/skylersaleh/tt02-hello

Input Output
1 if debug_mode == 0:

clock_divider_ratio[0] elif
debug_mode == 1:
character_rom_index[0]

segment b

2 if debug_mode == 0:
clock_divider_ratio[1] elif
debug_mode == 1:
character_rom_index[1]

segment c

3 if debug_mode == 0:
clock_divider_ratio[2] elif
debug_mode == 1:
character_rom_index[2]

segment d

4 if debug_mode == 0:
clock_divider_ratio[3] elif
debug_mode == 1:
slow_clock_output (used for flash
generator)

segment e

5 flash enable: 0 = Flash display
between each output letter. 1 =
Do not flash display.

segment f

6 must be zero: 0 = Prints
‘H-E-L-L-O’ 1 = Implementation
defined behavior

segment g

7 debug_mode: 0 = normal
operation, 1 = debug mode

segment decimal

194

132 : MicroASIC VI

• Author: Mikhail Svarichevsky
• Description: Free-running oscillators to verify simulation vs reality + TRNG
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: You might benefit from frequency counter than can do aver-

aging across extended period of time.

How it works

Combinational loops with dividers to bring output frequency to <50kHz range

How to test

Select oscillator (pins 4-6) and mesaure frequency on one of output pins. Observe true
random numbers at pin 7.

IO

Input Output
0 clock in (for debugging) clock divided by 2^10
1 reset clock divided by 2^14
2 shift register clk clock divided by 2^18
3 shift register data clock divided by 2^22
4 clock source id_0 clock divided by 2^26
5 clock source id_1 clock divided by 2^30
6 clock source id_2 clock divided by 2^32
7 unused Bit 11 of shift register (to ensure it’s not optimized away)

195

https://github.com/BarsMonster/MicroAsicVI

133 : Optimised Euclidean Algorithm

• Author: Recep Said Dulger
• Description: Finding gcd of 2 4-bit number
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware: None

How it works

This circuit finds the gcd (greatest common divisor) of 2 4-bit numbers which are
entered by dip switch and it uses the Euclidean algorithm. Result displays by seven
segment display. The algorithm has been optimized by designing the control unit and
datapath.

How to test

Enter 4-bit 1st number by dip switches and set num_okey switch to 1. By doing that
1st number saved in register. Set num_okey switch to 0 and enter 2nd 4-bit number.
Set num_okey switch to 0 and after that gcd result will appear in seven segment
display.

IO

Input Output
0 clock ssd_out[0]
1 number[0] ssd_out[1]
2 number[1] ssd_out[2]
3 number[2] ssd_out[3]
4 number[3] ssd_out[4]
5 none ssd_out[5]
6 rst ssd_out[6]
7 num_okey none

196

https://github.com/RecepSaid/tt02-euclidean-algorithm
https://github.com/RecepSaid/tt02-euclidean-algorithm

134 : CRC-16 and Parity calculator

• Author: Chris Burton
• Description: CRC-16/XModem and Even Parity calculator based on Ben Eater

error detection videos.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: Can be used with any microcontroller, or by toggling

switches.

How it works

Two banks of CRC calculators (A and B) each with inputs for the shift register data
and clock, active low reset (when high toggle shiftClk to reset) and read back mode
which disables the feedback XOR to allow reading data back out.

How to test

Connect Pico as shown in Wokwi and run test code to send a string, read back calcu-
lated CRC/parity and compare.

IO

Input Output
0 nRst_A crcOutput_A
1 shiftData_A parity_A
2 shiftClk_A none
3 nRead_A none
4 nRst_B crcOutput_B
5 shiftData_B parity_B
6 shiftClk_B none
7 nRead_B none

197

https://github.com/8086net/tt02-CRC16
https://wokwi.com/projects/349833797657690706

135 : SevSegFX

• Author: Mazen Saghir, ECE Department, American University of Beirut
(mazen@aub.edu.lb)

• Description: Seven segment display effect generator
• GitHub repository
• HDL project
• Extra docs
• Clock: 12500 Hz
• External hardware:

How it works

Generates hexadecimal digits and 16 dynamic patterns on the seven segment display.

How to test

Use input[7] to display digits (=0) or effects (=1). Use input[6] to blink displayed
digits (=1) or not (=0). Only digits can be blinked. Use inputs [5:2] to select digit or
effect pattern to display.

IO

Input Output
0 clock segment a
1 reset segment b
2 sel0/d0 segment c
3 sel1/d1 segment d
4 sel2/d2 segment e
5 sel3/d2 segment f
6 blink segment g
7 fx none

198

https://github.com/mazensaghir/tt02-sevsegfx

136 : LAB11

Figure 35: picture

• Author: Thomas Zachariah
• Description: Cycles through the characters of LAB11
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 1 Hz
• External hardware: None

How it works

Gates & flip-flops connected to the 7-segment display change the state of corresponding
LED segments to form the next character, each cycle

How to test

Set to desired clock speed — characters are most readable at the lowest speed

IO

199

https://github.com/tzachari/tt02-lab11
https://wokwi.com/projects/341631644820570706
https://github.com/tzachari/tt02-lab11

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

200

137 : Option23 Serial

• Author: bitluni
• Description: Character ROM and bitmap shifter for POV displays
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: Pink LEDs

How it works

clock: clocks out character columns or shifts in data. Data is 8bits LSB first. Highest
bit is ignored. Data = b01xxxxxx ASCII character no x + 32. data = b00xxxxxx
bitmap column. under/over is underline and overline for all bitmap columns

How to test

Shift in some data and set din = 1111111 to clock out characters and graphics

IO

Input Output
0 clock led 0
1 reset led 1
2 write led 2
3 din led 3
4 under led 4
5 over led 5
6 none led 6
7 none led 7

201

https://github.com/bitluni/tt02-option23ser

138 : Option23

• Author: bitluni
• Description: Character ROM and bitmap shifter for POV displays
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: Pink LEDs

How it works

clock: clocks out character columns or shifts in data. din = 1111111: show characters
and bitmaps column by column. din = 1xxxxxx shift in ASCII character x. din =
b10xxxxx : shift in bitmap column xxxxx

How to test

Shift in some data and set din = 1111111 to clock out characters and graphics

IO

Input Output
0 clock led 0
1 din 0 led 1
2 din 1 led 2
3 din 2 led 3
4 din 3 led 4
5 din 4 led 5
6 din 5 led 6
7 din 6 led 7

202

https://github.com/bitluni/tt02-option23

139 : Option22

• Author: bitluni
• Description: Looong shift register. 22x8 bit
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: Pink LEDs

How it works

write=high: Data is shifted-in on clock positive edge. Each 8 clocks a full byte is
buffered at the output. It rotatetes all 22 words. Reset only resets internal counter for
the bit index.

How to test

Keep write high and push 22x8 bits in. Keep clock with write low to recieve the bytes
a the output

IO

Input Output
0 clock led 0
1 reset led 1
2 write led 2
3 data led 3
4 none led 4
5 none led 5
6 none led 6
7 none led 7

203

https://github.com/bitluni/tt02-option22

140 : 4x4 RAM

• Author: Michael Bartholic
• Description: 4 word, 4 bit read/write RAM
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None.

How it works

Set write enable to write to the given address. Read given address on output.

How to test

Set a word on data lines, set address on addr lines. Cycle write enable. Try reading
value on rdata.

IO

Input Output
0 clock rdata[0]
1 data[0] rdata[1]
2 data[1] rdata[2]
3 data[2] rdata[3]
4 data[3] addr[0]
5 addr[0] addr[1]
6 addr[1] clock
7 write_enable write_enable

204

https://github.com/theFestest/tt02-4x4-ram
https://wokwi.com/projects/341557831870186068

141 : Digital padlock

Figure 36: picture

• Author: Jean THOMAS
• Description: A 4-digit electronic padlock
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 100 Hz
• External hardware: Four push buttons, cabled as active high with hardware

debounce circuitry.

How it works

Each buttons press is detected by a rising edge detector, and each button press is
decoded into a binary code. That binary code is stored in a shift-register which is
continuously checked against a reference value (‘the padlock code’).

How to test

Connect a clock generator to the clock input, connect all four buttons with a debounce
circuit - the buttons should act as active high.

IO

Input Output
0 clock none
1 Button A none
2 Button B none
3 Button C none

205

https://github.com/jeanthom/tinytapout-lock
https://wokwi.com/projects/341438392303616596
README.md

Input Output
4 Button D none
5 none none
6 none Button press detected
7 none Code valid

206

142 : FFT Butterfly in Wokwi

• Author: James R
• Description: Single FFT butterfly with 2-bit resolution
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

Calculates low-resolution FFT of two 2-bit inputs

How to test

Change the inputs

IO

Input Output
0 xr0.0 xr0.0
1 xr0.1 Xr0.1
2 xj0.0 Xj0.0
3 xj0.1 Xj0.1
4 xr1.0 Xr1.0
5 xr1.1 Xr1.1
6 xj1.0 Xj1.0
7 xj1.1 Xj1.1

207

https://github.com/jdrosent/tt02-submission-template
https://wokwi.com/projects/349952820323025491

143 : Femto 4-bit CPU

• Author: Majdi Abdul Samad, ECE Dept., American University of Beirut
(mia42@mail.aub.edu)

• Description: Design of a small single-cycle CPU with simple RISC/Accumulator
ISA

• GitHub repository
• HDL project
• Extra docs
• Clock: 5 Hz
• External hardware: None

How it works

NOTE: ISA is included in the ReadMe. Contains a register file, ALU, and 7 segment
decoder. Instructions are sent in from inputs 7 downto 1 (0 reserved for clk), the
register source and destination are sent to the register file (synch write/asynch read).
Opcode and register read data are sent to the ALU for the operation. The output data
could be stored in the ALU, the reigster file, or sent to the 7 segment decoder to power
the LED output. See the ReadMe for more details.

How to test

Design was tested with a ModelSim TCL script, provided here and should be compatible
with other TCL accepting simulators. A cocotb testbench will also be made available.

IO

Input Output
0 clock segment a
1 opcode[0] segment b
2 opcode[1] segment c
3 opcode[2] segment d
4 reg_dest[0] segment e
5 reg_dest[1] segment f
6 reg_src[0] segment g
7 reg_src[1] none

208

https://github.com/majdiabdulsamad/tt02-Femto
README.md

144 : Logisim demo - LED blinker

• Author: Tholin
• Description: Example of how to use Logisim Evolution generated Verilog for

TinyTapeout.
• GitHub repository
• HDL project
• Extra docs
• Clock: 2 Hz
• External hardware: A button for reset, some way to display the output (LEDs)

How it works

Its a 4-bit ring-shift register with a single ‘1’ cycling through it after reset.

How to test

After starting the clock, the 4 outputs will remain off or in a random state until the
reset input is activated. Then it should work as described.

IO

Input Output
0 CLK O_0
1 RST O_1
2 none O_2
3 none O_3
4 none none
5 none none
6 none none
7 none none

209

https://github.com/AvalonSemiconductors/tt02-logisim-example

145 : Secret File

• Author: bitluni
• Description: Nothing to see here
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: Shredder

How it works

Leving it alone works

How to test

Don’t test me

IO

Input Output
0 clock bit 0
1 none bit 1
2 none bit 2
3 none bit 3
4 none bit 4
5 none bit 5
6 none bit 6
7 none bit 7

210

https://github.com/bitluni/tt02-SecretFile

146 : Hex to Seven Semgent Converter

• Author: Samuel Sun
• Description: Converts from a binary input to hex seven-segment display
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: seven-segment

How it works

Input binary, get seven-segment hex out

How to test

Input binary, get seven-segment hex out

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

211

https://github.com/cmu-stuco-98154/f22-tt02-qilins
https://wokwi.com/projects/349519263900369490

147 : PWM Generator

• Author: Jason Lu
• Description: Generates 100 Hz PWM signal
• GitHub repository
• HDL project
• Extra docs
• Clock: 5000 Hz
• External hardware:

How it works

The duty cycle inputs run from 0 - 50 and specify a duty cycle of input * 2

How to test

Link up switches to the duty cycle inputs and toggle them to set the duty cycle. Wire
an LED to the PWM output to see the output

IO

Input Output
0 clock pwm output
1 reset none
2 duty cycle 0 none
3 duty cycle 1 none
4 duty cycle 2 none
5 duty cycle 3 none
6 duty cycle 4 none
7 duty cycle 5 none

212

https://github.com/cmu-stuco-98154/f22-tt02-jxlu

148 : 3-bit adder

• Author: MG
• Description: Add two 3-bit numbers
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Adds A0 A1 A2 and B0 B1 B2 implemented using one half-adder and two full-adders.
LEDs light up correspondingly.

How to test

Result: binary added score at output LED

IO

Input Output
0 A0, lowest order bit of first number segment a
1 A1, second order bit of first number segment b
2 A2, highest order bit of first number segment c
3 B0, lowest order bit of second number segment d
4 B1, second order bit of second number segment e
5 B2, highest order bit of second number segment f
6 none segment g
7 none none

213

https://github.com/cmu-stuco-98154/f22-tt02-mgee3
https://wokwi.com/projects/349803790984020562

149 : Continious Math

• Author: Sophia Li
• Description: output is a total you can ADD, SUBTRACT, XOR, or LEFT_SHIFT

with the input

• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

uses a register and some combinational logic. There is a simple state machine so you
must release the button for enable_arithmetic before enabeling it again. Basically, the
same operation won’t happen every clock cycle 100k times a second.

How to test

Switch 6. after reset, the output should be zero. Hitting enable (Switch 5) will compute
the current arithOp (+ = 2’b00, - = 2’b01, ^ = 2’b10, « = 2’b11

IO

Input Output
0 clock LED[7]
1 reset LED[6]
2 enable LED[5]
3 in_val[2] LED[4]
4 in_val[1] LED[3]
5 in_val[0] LED[2]
6 arithOp[1] LED[1]
7 arithOp[0] LED[0]

214

https://github.com/cmu-stuco-98154/f22-tt02-sophiali

150 : Async FIFO

• Author: Jon Recta
• Description: A very small asynchonous FIFO
• GitHub repository
• HDL project
• Extra docs
• Clock: 5000 Hz
• External hardware: None

How it works

After reset, run write_clock and assert write_enable with some data on wdata, then
while run_clock is running, assert read_enable. If write_enable is asserted while full
is high, the data will be rejected. If read_enable is asserted while empty is high,
read_data is invalid.

How to test

After resetting, test above behavior with different ratios of write_clock and
read_cloc.

IO

Input Output
0 write_clock none
1 read_clock none
2 reset none
3 write_enable fifo_full
4 read_enable fifo_empty
5 wdata[0] rdata[0]
6 wdata[1] rdata[1]
7 wdata[2] rdata[2]

215

https://github.com/cmu-stuco-98154/f22-tt02-jrecta
https://github.com/jonpaolo02/tt02-async-fifo/blob/main/README.md

151 : Beep Boop Traffic Light Controller

• Author: Anish Singhani
• Description: Sequencer for a traffic light with a walk button, with timings tuned

to match the iconic ‘beep boop’ streetlight formerly installed in front of Carnegie
Mellon University

• GitHub repository
• HDL project
• Extra docs
• Clock: 100 Hz
• External hardware: LEDs, noisemaker, button

How it works

Press the walk button and the traffic light will turn red, then the walk signal and ‘beep
boop’ will begin

How to test

See inputs and outputs

IO

Input Output
0 clock red
1 reset yellow
2 walk button green
3 none walk
4 none no walk
5 none noisemaker
6 none none
7 none none

216

https://github.com/asinghani/tt02-beepboop

152 : Basic 4 bit cpu

• Author: Noah Gaertner
• Description: 4-bit CPU that does add, subtract, multiply, left and right shifts,

conditional jump based on external signal, logical and bitwise AND and OR,
equality and inequality checking, bitwise inversion, and logical NOT

• GitHub repository
• HDL project
• Extra docs
• Clock: 50K (or lower, whatever) Hz
• External hardware: test pattern generator, output reader (will probably work

with just an arduino for both)

How it works

Implements a highly reduced ISA that fits on the limited allowed space, and uses a
4-bit bus to get the program and data values in and out of the chip, in addition to a
two bit bus to tell it what to do at any given time, as well as a clock and reset signal

How to test

Write a program for the ISA and try to run it! Remember you need to synchronously
RESET and then SETRUNPT to the proper value before you try to do anything!

IO

Input Output
0 clock program counter
1 reset program counter
2 instruction program counter
3 instruction program counter
4 data output data
5 data output data
6 data output data
7 data output data

217

https://github.com/noahgaertner/tt02-verilog-demo
https://github.com/noahgaertner/tt02-verilog-demo/blob/main/README.md

Figure 37: picture

218

153 : Adi counter

• Author: Prabal Dutta
• Description: Test FSM
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 1 Hz
• External hardware: Just PB and 7-seg

How it works

Clocks FSM on button push

How to test

Hook up to 7-deg display, push button, and see A-d-i cycle on LEDs

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

219

https://github.com/prabaldutta/tt02-adi-demo
https://wokwi.com/projects/341613097060926036

154 : Clock divider ASIC

• Author: Sad Electronics
• Description: Uses a series of flip flops to divide the clock
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

todo

How to test

todo

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

220

https://github.com/TinyTapeout/tt02-tinytapeout-clock-divider-asic
https://wokwi.com/projects/341353928049295956

155 : Amaranth 6 Bits Gray counter

picture

• Author: Camilo Soto
• Description: Amaranth Gray 6 Bits gray counter
• GitHub repository
• HDL project
• Extra docs
• Clock: 3000 Hz
• External hardware: None

How it works

The reflected binary code (RBC), also known as reflected binary (RB) or Gray code
after Frank Gray, is an ordering of the binary numeral system such that two succes-
sive values differ in only one bit (binary digit). For example, the representation of
the decimal value “1” in binary would normally be “001” and “2” would be “010”. In
Gray code, these values are represented as “001” and “011”. That way, increment-
ing a value from 1 to 2 requires only one bit to change, instead of two (Wikipedia
https://en.wikipedia.org/wiki/Gray_code)

How to test

Apply clk to the in[0], rst on in[1]

IO

Input Output
0 clock count[0]
1 reset count[1]
2 none count[2]
3 none count[3]
4 none count[4]
5 none count[5]
6 none count[6]
7 none none

221

https://github.com/tucanae47/tt02-gray-counter
https://github.com/tucanae47/tt02-gray-counter

156 : 7 segment seconds

• Author: Matt Venn
• Description: counts from 0 to 9, incrementing once per second
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

counter + combinational logic

How to test

set the clock divider to 1 hz. toggle reset and watch the 7 segment display

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

222

https://github.com/TinyTapeout/tt02-test-7seg
https://wokwi.com/projects/340805072482992722

157 : 7 segment seconds

• Author: Matt Venn
• Description: count up to 10, one second at a time
• GitHub repository
• HDL project
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

uses a register and some combinational logic

How to test

after reset, the counter should increase by one every second

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

223

https://github.com/TinyTapeout/tt02-verilog-demo

158 : Laura’s L

• Author: Laura
• Description: Makes an L on the 7 segment when you press buttons 1 & 2
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

just an and gate

How to test

press buttons 1 & 2 to see the L

IO

Input Output
0 none segment a
1 button 1 segment b
2 button 2 segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

224

https://github.com/mattvenn/tt02-laura
https://wokwi.com/projects/341678527574180436

159 : M segments

Figure 38: picture

• Author: Matt Venn
• Description: Setting the correct input will show a 3 on the display
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

AND gates connect to the 7 segment display

How to test

Turning on the first 4 inputs will show a 3 on the display

225

https://github.com/mattvenn/tt02-m-segments
https://wokwi.com/projects/339688086163161683

IO

Input Output
0 input 1 segment a
1 input 2 segment b
2 input 3 segment c
3 input 4 segment d
4 none segment e
5 none segment f
6 none segment g
7 none dot

226

160 : 7-Seg ‘Tiny Tapeout’ Display

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: This circuit will output a string of characters (’tiny tapeout’) to

the 7-segment display.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 1 Hz
• External hardware: None

How it works

The logic to light the characters appears in the bottom half of the simulation window.
The top half of the simulation window implements a modulo-11 counter. In other words,
the counter increments up to 11 then resets. This counter is used to determine which
character we should output to the 7-segment display. The truth table for the design
can be found in the Design Spreadsheet: https://docs.google.com/spreadsheets/d/1-
h9pBYtuxv6su2EC8qBc6nX_JqHXks6Gx5nmHFQh_30/edit

How to test

Simply turn on and watch the characters on the 7-segment display. If needed, flip
Input[1] (zero-indexed) ON to reset the state machine counter.

IO

Input Output
0 clock segment a
1 Reset Counter segment b
2 N/A segment c
3 Clock Disable (Test Mode) segment d
4 Test Logic A segment e
5 Test Logic B segment f
6 Test Logic C segment g
7 Test Logic D N/A

227

https://github.com/jdrosent/tt02-7segstringdisplay
https://wokwi.com/projects/347497504164545108
https://wokwi.com/projects/347497504164545108

161 : Customizable UART Character

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: This design implements a single character UART transmitter using

registers made from D-flip flops and multiplexers.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 300 Hz
• External hardware: Arduino, computer with serial monitor connected to the

Arduino

How it works

This circuit implements a shift register with 17 bits: four idle bits, one start bit, eight
data bits, one stop bit, and three more idle bits. The circuit supports transmitting
a user-selected ASCII character from 0x40 (@) to 0x5F (_), including capital letters
from the Latin alphabet.

How to test

Connect an Arduino serial RX pin to the eight output pin (Output[7]). In the Arduino
code, set the serial baud rate Serial.begin(); in the *.ino file to 300. Set the PCB clock
frequency to 300 Hz as well. Set SW7 to OFF (“Load”). Set SW2 to ON and SW3-6
to OFF. Set SW7 to ON (“TX”). Set SW8 to ON (“Output Enable”). Connect the
Arduino via USB to your computer and run the serial monitor. If there’s no output
from the Arduino serial monitor, try toggling SW7 OFF and ON again. You should see
the character ‘A’ appearing repeatedly in the serial monitor.

IO

Input Output
0 clock segment a (Load/TX)
1 Bit 0 segment b
2 Bit 1 segment c
3 Bit 2 segment d
4 Bit 3 segment e
5 Bit 4 segment f (Output Enable)
6 Load/TX segment g

228

https://github.com/jdrosent/tt02-UARTcharacter
https://wokwi.com/projects/347140425276981843
https://wokwi.com/projects/347140425276981843

Input Output
7 Output Enable UART Serial Out

229

162 : Customizable UART String

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: This design Supports sending multiple ASCII characters over UART.
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 300 Hz
• External hardware: Arduino, computer with serial monitor connected to the

Arduino

How it works

This circuit implements five shift registers with 21 bits: seven idle bits, one start bit,
eight data bits, one stop bit, and four more idle bits. The circuit supports transmitting
a string of ASCII characters

How to test

Connect an Arduino serial RX pin to the eight output pin (Output[7]). In the Arduino
code, set the serial baud rate Serial.begin(); in the *.ino file to 300. Set the PCB
clock frequency to 300 Hz as well. Set the slide switch to the clock. Set SW7 to OFF
(‘Load’). Set SW8 to ON (‘Output Enable’). Set SW7 to ON (‘TX’).

IO

Input Output
0 clock segment a (Output Enable)
1 N/A segment b (Load/TX)
2 N/A segment c
3 N/A segment d
4 N/A segment e
5 N/A segment f
6 Load/TX segment g
7 Output Enable UART Serial Out

230

https://github.com/jdrosent/tt02-UARTstring
https://wokwi.com/projects/347144898258928211
https://wokwi.com/projects/347144898258928211

163 : Customizable Padlock

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: This design implements a customizable padlock. Set a code for

your digital safe!
• GitHub repository
• Wokwi project
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

Switch 2 is used to reset the safe. Switch 8 is used to set your code (on = set, off =
locked). Switches 3 to 5 are used to set the code. The push button is used to enter
your code.

How to test

Set your desired code using Switches 3 to 5. Once you’ve done so, toggle Switch 8 to
on then back off–the safe is now set! Turn on Switch 2, and press the push button.
The seven segment display should show “L” (for locked). Next turn off Switch 2 to
begin entering codes. If you enter a correct code, thw seven segment display should
show “U” (for unlocked).

IO

Input Output
0 N/A segment a
1 Reset segment b
2 Code 0 segment c
3 Code 1 segment d
4 Code 2 segment e
5 N/A segment f
6 N/A segment g
7 Set Code none

231

https://github.com/jdrosent/tt02-padlock
https://wokwi.com/projects/347417602591556180
https://wokwi.com/projects/347417602591556180

164 : PWM Generator

• Author: Hassan Baydoun hhb16@mail.aub.edu, Razan Thebian rat17@mail.aub
.edu: Electrical and Computer Engineering Department, American University of
Beirut

• Description: It is a PWM Generator with selectable duty cycle 0-10-20-..-100%
with clock divider built in

• GitHub repository
• HDL project
• Extra docs
• Clock: 12500Hz Hz
• External hardware: You can control the intensity of an external LED using the

PWM Output

How it works

The design uses an external clock and 4 bits to select the duty cycle. It outputs a
PWM signal with 1/10 the frequency of the clock supplied and a duty cycle depending
on the 4 selected bits.

How to test

Use clock on input 0, reset on input 1, Turn bits of duty cycle select (input 2:5) to
choose duty cycle (0000 -> 0%, 0001 -> 10%, 0010 -> 20%,.., 1010 ->100%) and
choose freq0 and freq1 as clock dividers (1x, 1/2x, 1/4x, 1/8x)

IO

Input Output
0 clock PWM_Out
1 reset none
2 duty0 none
3 duty1 none
4 duty2 none
5 duty3 none
6 freq0 none
7 freq1 none

232

mailto:hhb16@mail.aub.edu
mailto:rat17@mail.aub.edu
mailto:rat17@mail.aub.edu
https://github.com/H-Bydn/TinyTapeout2-PWMgenerator

165 : MRCS Verilog test

• Author: Steven Bos
• Description: Testing various auto-generated verilog for various sync and async

logic gates
• GitHub repository
• HDL project
• Extra docs
• Clock: 0 Hz
• External hardware: none

How it works

This Project contains various latches and one edge detector.
A larger description will follow.

How to test

A complete description to test will follow.
There are 5 components to test.

IO

Input Output
0 clock none
1 none none
2 none none
3 none none
4 none none
5 none none
6 none none
7 none none

233

https://github.com/aiunderstand/tt02-mrcs-verilog-test
https://github.com/aiunderstand/tt02-mrcs-verilog-test

Technical info

Scan chain

All 250 designs are joined together in a long chain similiar to JTAG. We provide the
inputs and outputs of that chain (see pinout below) externally, to the Caravel logic
analyser, and to an internal scan chain driver.
The default is to use an external driver, this is in case anything goes wrong with the
Caravel logic analyser or the internal driver.
The scan chain is identical for each little project, and you can read it here.

Figure 39: block diagram

234

https://github.com/mattvenn/wokwi-verilog-gds-test/blob/main/template/scan_wrapper.v

Updating inputs and outputs of a specified design

A good way to see how this works is to read the FSM in the scan controller. You can
also run one of the simple tests and check the waveforms. See how in the scan chain
verification doc.

• Signal names are from the perspective of the scan chain driver.
• The desired project shall be called DUT (design under test)

Assuming you want to update DUT at position 2 (0 indexed) with inputs = 0x02
and then fetch the output. This design connects an inverter between each input and
output.

• Set scan_select low so that the data is clocked into the scan flops (rather than
from the design)

• For the next 8 clocks, set scan_data_out to 0, 0, 0, 0, 0, 0, 1, 0
• Toggle scan_clk_out 16 times to deliver the data to the DUT
• Toggle scan_latch_en to deliver the data from the scan chain to the DUT
• Set scan_select high to set the scan flop’s input to be from the DUT
• Toggle the scan_clk_out to capture the DUT’s data into the scan chain
• Toggle the scan_clk_out another 8 x number of remaining designs to receive

the data at scan_data_in

Figure 40: update cycle

Notes on understanding the trace

• There are large wait times between the latch and scan signals to ensure no hold
violations across the whole chain. For the internal scan controller, these can be
configured (see section on wait states below).

• The input looks wrong (0x03) because the input is incremented by the test bench
as soon as the scan controller captures the data. The input is actually 0x02.

• The output in the trace looks wrong (0xFE) because it’s updated after a full
refresh, the output is 0xFD.

235

verilog/rtl/scan_controller/scan_controller.v
verification.md
verification.md

Clocking

Assuming:

• 100MHz input clock
• 8 ins & 8 outs
• 2 clock cycles to push one bit through the scan chain (scan clock is half input

clock rate)
• 250 designs
• scan controller can do a read/write cycle in one refresh

So the max refresh rate is 100MHz / (8 * 2 * 250) = 25000Hz.

Clock divider

A rising edge on the set_clk_div input will capture what is set on the input pins and
use this as a divider for an internal slow clock that can be provided to the first input
bit.
The slow clock is only enabled if the set_clk_div is set, and the resulting clock is
connected to input0 and also output on the slow_clk pin.
The slow clock is synced with the scan rate. A divider of 0 mean it toggles the input0
every scan. Divider of 1 toggles it every 2 cycles. So the resultant slow clock frequency
is scan_rate / (2 * (N+1)).
See the test_clock_div test in the scan chain verification.

Wait states

This dictates how many wait cycle we insert in various state of the load process. We
have a sane default, but also allow override externally.
To override, set the wait amount on the inputs, set the driver_sel inputs both high,
and then reset the chip.
See the test_wait_state test in the scan chain verification.

236

verification.md
verification.md

Pinout

PIN NAME DESCRIPTION
20:12 active_select 9 bit input to set which design is active
28:21 inputs 8 inputs
36:29 outputs 8 outputs
37 ready goes high for one cycle everytime the scanchain is refreshed
10 slow_clk slow clock from internal clock divider
11 set_clk_div enable clock divider
9:8 driver_sel which scan chain driver: 00 = external, 01 = logic analyzer, 1x = internal

21 ext_scan_clk_out for external driver, clk input
22 ext_scan_data_out data input
23 ext_scan_select scan select
24 ext_scan_latch_en latch
29 ext_scan_clk_in clk output from end of chain
30 ext_scan_data_in data output from end of chain

Instructions to build GDS

To run the tool locally or have a fork’s GitHub action work, you need the
GH_USERNAME and GH_TOKEN set in your environment.
GH_USERNAME should be set to your GitHub username.
To generate your GH_TOKEN go to https://github.com/settings/tokens/new . Set
the checkboxes for repo and workflow.
To run locally, make a file like this:

export GH_USERNAME=<username>
export GH_TOKEN=<token>

And then source it before running the tool.

Fetch all the projects

This goes through all the projects in project_urls.py, and fetches the latest artifact zip
from GitHub. It takes the verilog, the GL verilog, and the GDS and copies them to
the correct place.

./configure.py --clone-all --fetch-gds

237

Configure Caravel

Caravel needs the list of macros, how power is connected, instantiation of all the
projects etc. This command builds these configs and also makes the README.md
index.

./configure.py --update-caravel

Build the GDS

To build the GDS and run the simulations, you will need to install the Sky130 PDK
and OpenLane tool. It takes about 5 minutes and needs about 3GB of disk space.

export PDK_ROOT=<some dir>/pdk
export OPENLANE_ROOT=<some dir>/openlane
cd <the root of this repo>
make setup

Then to create the GDS:

make user_project_wrapper

Changing macro block size

After working out what size you want:

• adjust configure.py in CaravelConfig.create_macro_config().
• adjust the PDN spacing to match in openlane/user_project_wrapper/config.tcl:

– set ::env(FP_PDN_HPITCH)
– set ::env(FP_PDN_HOFFSET)

238

Verification

We are not trying to verify every single design. That is up to the person who makes
it. What we want is to ensure that every design is accessible, even if some designs are
broken.
We can split the verification effort into functional testing (simulation), static tests
(formal verification), timing tests (STA) and physical tests (LVS & DRC).
See the sections below for details on each type of verification.

Setup

You will need the GitHub tokens setup as described in INFO.
The default of 250 projects takes a very long time to simulate, so I advise overriding
the configuration:

fetch the test projects
./configure.py --test --clone-all
rebuild config with only 20 projects
./configure.py --test --update-caravel --limit 20

You will also need iVerilog & cocotb. The easist way to install these are to download
and install the oss-cad-suite.

Simulations

• Simulation of some test projects at RTL and GL level.
• Simulation of the whole chip with scan controller, external controller, logic anal-

yser.
• Check wait state setting.
• Check clock divider setting.

239

INFO.md#instructions-to-build-gds
https://github.com/YosysHQ/oss-cad-suite-build

Scan controller

This test only instantiates user_project_wrapper (which contains all the small projects).
It doesn’t simulate the rest of the ASIC.

cd verilog/dv/scan_controller
make test_scan_controller

The Gate Level simulation requires scan_controller and user_project_wrapper to be
re-hardened to get the correct gate level netlists:

• Edit openlane/scan_controller/config.tcl and change NUM_DESIGNS=250 to
NUM_DESIGNS=20.

• Then from the top level directory:
make scan_controller make user_project_wrapper

• Then run the GL test
cd verilog/dv/scan_controller make test_scan_controller_gl

single Just check one inverter module. Mainly for easy understanding of the
traces.

make test_single

custom wait state Just check one inverter module. Set a custom wait state
value.

make test_wait_state

clock divider Test one inverter module with an automatically generated clock on
input 0. Sets the clock rate to 1/2 of the scan refresh rate.

make test_clock_div

240

Top level tests setup

For all the top level tests, you will also need a RISCV compiler to build the firmware.
You will also need to install the ‘management core’ for the Caravel ASIC submission
wrapper. This is done automatically by following the PDK install instructions.

Top level test: internal control

Uses the scan controller, instantiated inside the whole chip.

cd verilog/dv/scan_controller_int
make coco_test

Top level test: external control

Uses external signals to control the scan chain. Simulates the whole chip.

cd verilog/dv/scan_controller_ext
make coco_test

Top level test: logic analyser control

Uses the RISCV co-processor to drive the scanchain with firmware. Simulates the
whole chip.

cd verilog/dv/scan_controller_la
make coco_test

Formal Verification

• Formal verification that each small project’s scan chain is correct.
• Formal verification that the correct signals are passed through for the 3 different

scan chain control modes.

241

https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-8.3.0-2020.04.1-x86_64-linux-ubuntu14.tar.gz
INFO.md#build-the-gds

Scan chain

Each GL netlist for each small project is proven to be equivalent to the reference scan
chain implementation. The verification is done on the GL netlist, so an RTL version
of the cells used needed to be created. See here for more info.

Scan controller MUX

In case the internal scan controller doesn’t work, we also have ability to control the
chain from external pins or the Caravel Logic Analyser. We implement a simple MUX
to achieve this and formally prove it is correct.

Timing constraints

Due to limitations in OpenLane - a top level timing analyis is not possible. This would
allow us to detect setup and hold violations in the scan chain.
Instead, we design the chain and the timing constraints for each project and the scan
controller with this in mind.

• Each small project has a negedge flop flop at the end of the shift register to
reclock the data. This gives more hold margin.

• Each small project has SDC timing constraints
• Scan controller uses a shift register clocked with the end of the chain to ensure

correct data is captured.
• Scan controller has its own SDC timing constraints
• Scan controller can be configured to wait for a programmable time at latching

data into the design and capturing it from the design.
• External pins (by default) control the scan chain.

Physical tests

• LVS
• DRC
• CVC

242

tinytapeout_scan/README.md
verilog/rtl/scan_controller/properties.v
https://github.com/mattvenn/wokwi-verilog-gds-test/blob/17f106db36f022536d013b960316bcc7f02c572c/template/scan_wrapper.v#L67
https://github.com/mattvenn/wokwi-verilog-gds-test/blob/17f106db36f022536d013b960316bcc7f02c572c/template/scan_wrapper.v#L67
https://github.com/mattvenn/wokwi-verilog-gds-test/blob/main/src/base.sdc
https://github.com/mattvenn/tinytapeout-mpw7/blob/aacae16304f4a4878943a49fd479d8a284736e32/verilog/rtl/scan_controller/scan_controller.v#L334
openlane/scan_controller/base.sdc

LVS

Each project is built with OpenLane, which will check LVS for each small project. Then
when we combine all the projects together we run a top level LVS & DRC for routing,
power supply and macro placement.
The extracted netlist from the GDS is what is used in the formal scan chain proof.

DRC

DRC is checked by OpenLane for each small project, and then again at the top level
when we combine all the projects.

CVC

Mitch Bailey’ CVC checker is a device level static verification system for quickly and
easily detecting common circuit errors in CDL (Circuit Definition Language) netlists.
We ran the test on the final design and found no errors.

• See the paper here.
• Github repo for the tool: https://github.com/d-m-bailey/cvc

243

https://woset-workshop.github.io/PDFs/2020/a05-slides.pdf

Sponsored by

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

• Uri Shaked for wokwi development and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson for verification expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in TinyTapeout 01 and volunteered time to improve

docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makers
• Efabless for running the shuttles and providing OpenLane and sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support

244

https://efabless.com/
https://wokwi.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/

	Render of whole chip
	Projects
	0 : Test Inverter Project
	1 : SIMON Cipher
	2 : HD74480 Clock
	3 : Scrolling Binary Matrix display
	4 : Power supply sequencer
	5 : Duty Controller
	6 : S4GA: Super Slow Serial SRAM FPGA
	7 : ALU
	8 : The McCoy 8-bit Microprocessor
	9 : binary clock
	10 : TinySensor
	11 : 16x8 SRAM & Streaming Signal Generator
	12 : German Traffic Light State Machine
	13 : 4-spin Ising Chain Simulation
	14 : Avalon Semiconductors `5401' 4-bit Microprocessor
	15 : small FFT
	16 : Stream Integrator
	17 : tiny-fir
	18 : Configurable SR
	19 : LUTRAM
	20 : chase the beat
	21 : BCD to 7-segment encoder
	22 : A LED Flasher
	23 : 4-bit Multiplier
	24 : Avalon Semiconductors `TBB1143' Programmable Sound Generator
	25 : Transmit UART
	26 : RGB LED Matrix Driver
	27 : Tiny Phase/Frequency Detector
	28 : Loading Animation
	29 : tiny egg timer
	30 : Potato-1 (Brainfuck CPU)
	31 : heart zoe mom dad
	32 : Tiny Synth
	33 : 5-bit Galois LFSR
	34 : prbs15
	35 : 4-bit badge ALU
	36 : Pi (π) to 1000+ decimal places
	37 : Siren
	38 : YaFPGA
	39 : M0: A 16-bit SUBLEQ Microprocessor
	40 : bitslam
	41 : 8x8 Bit Pattern Player
	42 : XLS: bit population count
	43 : RC5 decoder
	44 : chiDOM
	45 : Super Mario Tune on A Piezo Speaker
	46 : Tiny rot13
	47 : 4 bit counter on steamdeck
	48 : Shiftregister Challenge 40 Bit
	49 : TinyTapeout2 4-bit multiplier.
	50 : TinyTapeout2 multiplexed segment display timer.
	51 : XLS: 8-bit counter
	52 : XorShift32
	53 : XorShift32
	54 : Multiple Tunes on A Piezo Speaker
	55 : clash cpu
	56 : TinyTapeout 2 LCD Nametag
	57 : UART-CC
	58 : 3-bit 8-channel PWM driver
	59 : LEDChaser from LiteX test
	60 : 8-bit (E4M3) Floating Point Multiplier
	61 : Dice roll
	62 : CNS TT02 Test 1:Score Board
	63 : CNS002 (TT02-Test 2)
	64 : Test2
	65 : 7-segment LED flasher
	66 : Nano-neuron
	67 : SQRT1 Square Root Engine
	68 : Breathing LED
	69 : Fibonacci & Gold Code
	70 : tinytapeout2-HELLo-3orLd-7seg
	71 : Non-restoring Square Root
	72 : GOL-Cell
	73 : 7-channel PWM driver controlled via SPI bus
	74 : hex shift register
	75 : Ring OSC Speed Test
	76 : TinyPID
	77 : TrainLED2 - RGB-LED driver with 8 bit PWM engine
	78 : Zinnia+ (MCPU5+) 8 Bit CPU
	79 : 4 bit CPU
	80 : Stack Calculator
	81 : 1-bit ALU
	82 : SPI Flash State Machine
	83 : r2rdac
	84 : Worm in a Maze
	85 : 8 bit CPU
	86 : Pseudo-random number generator
	87 : BCD to 7-Segment Decoder
	88 : Frequency Counter
	89 : Taillight controller of a 1965 Ford Thunderbird
	90 : FPGA test
	91 : chi 2 shares
	92 : chi 3 shares
	93 : Whisk: 16-bit Serial RISC CPU
	94 : Scalable synchronous 4-bit tri-directional loadable counter
	95 : Asynchronous Binary to Ternary Converter and Comparator
	96 : Vector dot product
	97 : Monte Carlo Pi Integrator
	98 : Funny Blinky
	99 : GPS C/A PRN Generator
	100 : Sigma-Delta ADC/DAC
	101 : BCD to Hex 7-Segment Decoder
	102 : SRLD
	103 : Counter
	104 : 2bitALU
	105 : A (7, 1/2) Convolutional Encoder
	106 : Tiny PIC-like MCU
	107 : RV8U - 8-bit RISC-V Microcore Processor
	108 : Logic-2G97-2G98
	109 : Melody Generator
	110 : Rotary Encoder Counter
	111 : Wolf sheep cabbage river crossing puzzle ASIC design
	112 : Low-speed UART transmitter with limited character set loading
	113 : Rotary encoder
	114 : FROG 4-Bit CPU
	115 : Configurable Gray Code Counter
	116 : Baudot Converter
	117 : Marquee
	118 : channel coding
	119 : Chisel 16-bit GCD with scan in and out
	120 : Adder with 7-segment decoder
	121 : Hex to 7 Segment Decoder
	122 : Multiple seven-segment digit buffer
	123 : LED Chaser
	124 : Rolling Average - 5 bit, 8 bank
	125 : w5s8: universal turing machine core
	126 : Test3
	127 : Seven Segment Clock
	128 : serv - Serial RISCV CPU
	129 : 4:2 Compressor
	130 : PS2 keyboard Interface
	131 : Hello Generator
	132 : MicroASIC VI
	133 : Optimised Euclidean Algorithm
	134 : CRC-16 and Parity calculator
	135 : SevSegFX
	136 : LAB11
	137 : Option23 Serial
	138 : Option23
	139 : Option22
	140 : 4x4 RAM
	141 : Digital padlock
	142 : FFT Butterfly in Wokwi
	143 : Femto 4-bit CPU
	144 : Logisim demo - LED blinker
	145 : Secret File
	146 : Hex to Seven Semgent Converter
	147 : PWM Generator
	148 : 3-bit adder
	149 : Continious Math
	150 : Async FIFO
	151 : Beep Boop Traffic Light Controller
	152 : Basic 4 bit cpu
	153 : Adi counter
	154 : Clock divider ASIC
	155 : Amaranth 6 Bits Gray counter
	156 : 7 segment seconds
	157 : 7 segment seconds
	158 : Laura's L
	159 : M segments
	160 : 7-Seg `Tiny Tapeout' Display
	161 : Customizable UART Character
	162 : Customizable UART String
	163 : Customizable Padlock
	164 : PWM Generator
	165 : MRCS Verilog test

	Technical info
	Scan chain
	Clocking
	Clock divider
	Wait states
	Pinout
	Instructions to build GDS
	Changing macro block size

	Verification
	Setup
	Simulations
	Top level tests setup
	Formal Verification
	Timing constraints
	Physical tests

	Sponsored by
	Team

