
M segments

Figure 1: picture

• Author Matt Venn
• Description Setting the correct input will show a 3 on the display
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
AND gates connect to the 7 segment display

How to test
Turning on the first 4 inputs will show a 3 on the display

IO

Input Output
0 input 1 segment a
1 input 2 segment b

1

https://github.com/mattvenn/tinytapeout_m_segments
https://wokwi.com/projects/339688086163161683
https://github.com/mattvenn/tinytapeout_m_segments/blob/main/README.md

Input Output
2 input 3 segment c
3 input 4 segment d
4 none segment e
5 none segment f
6 none segment g
7 none dot

2

1-bit ALU

Figure 2: picture

• Author Leo Moser
• Description 1-bit ALU from the book Structured Computer Organization:

Andrew S. Tanenbaum
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
The 1-bit ALU implements 4 different operations: AND, NOT, OR, ADD. The
current operating mode can be selected via F0 and F1. F0=0 and F1=0 results
in A AND B. F0=1 and F1=0 results in NOT B. F0=0 and F1=1 results in A
OR B. F0=1 and F1=1 results in A ADD B. Where A and B are the inputs

3

https://github.com/mole99/wokwi-1bit-alu
https://wokwi.com/projects/340318610245288530
https://github.com/mole99/wokwi-1bit-alu/blob/main/README.md

for the operation. Additional inputs can change the way of operation: ENA and
ENB enable/disable the respective input. INVA inverts A before applying the
operation. CIN is used as input for the full adder. Multiple 1bit ALUs could be
chained to create a wider ALU.

How to test
Set the operating mode via the DIP switches with F0 and F1. Next, set the
input with A and B and enable both signals with ENA=1 and ENB=1. If you
choose to invert A, set INVA to 1, otherwise to 0. For F0=1 and F1=1 you
can set CIN as additional input for the ADD operation. The 7-segment display
shows either a 0 or a 1 depending on the output. If the ADD operation is
selected, the dot of the 7-segment display represents the COUT.

IO

Input Output
0 CIN segment a
1 INVA segment b
2 A segment c
3 ENA segment d
4 B segment e
5 ENB segment f
6 F0 segment g
7 F1 COUT

4

Barrelshifter
• Author Johannes Hoff
• Description Shifts a 6 bit number up to 0-3 bits left
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware

How it works
An 6 bit input value and 2 bit shift amount is provided, and the shifted value
will be in the output

How to test
Choose an input value (like 6’b001010) and a shift amount (like 2’b10) and
combine it into input pins (like 8’b00101010) and observe that the output is the
shifted input (like 8’b10100000)

IO

Input Output
0 bit 5 (most significant) of input

value
bit 7 (most significant) of
shifted value

1 bit 4 of input value bit 6 of shifted value
2 bit 3 of input value bit 5 of shifted value
3 bit 2 of input value bit 4 of shifted value
4 bit 1 of input value bit 3 of shifted value
5 bit 0 (least significant) of input

value
bit 2 of shifted value

6 bit 5 (most significant) of shift
amount

bit 1 of shifted value

7 bit 0 (least significant) of shift
amount

bit 0 (least significant) of
shifted value

5

https://github.com/johshoff/barrelshifter-wokwi-gds
https://wokwi.com/projects/341136771628663380

PDM driver
• Author Harry Snell
• Description 5-bit pulse density modulation encoder (aka sigma-delta con-

verter)
• GitHub project
• Wokwi project
• Extra docs
• Clock 200 Hz
• External hardware Clock source, switches for input. LED, RC circuit,

logic analyser or oscilloscope to view output

How it works
The pdm_input is registered when write_en is high. The registered input
is added to an accummulator on each cycle. The overflow bit of the sum is
pdm_output.

How to test
Set reset low and write_en high, provide a clock (frequency not important) and
put a 5-bit number on pdm_input and see how the average value on pdm_out
changes

IO

Input Output
0 clock pdm_out
1 reset pdm_out_n
2 write_en none
3 pdm_input[0] none
4 pdm_input[1] none
5 pdm_input[2] none
6 pdm_input[3] none
7 pdm_input[4] none

6

https://github.com/H-S-S-11/tinytapeout-verilog-test
https://wokwi.com/projects/341154068332282450
https://github.com/H-S-S-11/tinytapeout-verilog-test/blob/main/README.md

2x 1 to 4 Frequency Divider
• Author Seth Kerr
• Description A simple flip-flop based frequency divider
• GitHub project
• Wokwi project
• Extra docs
• Clock 16Hz Hz
• External hardware external clock sources are necessary to test all inputs.

A simple adjustable astable 555 is recommended

How it works
The Frequency Divider works by taking 4 frequencies and selecting 2 with select
pins as inputs and through a flip-flop chain, divides the input into 4 frequencies.
The frequency breaks down to f/2, f/4, f/8, and f/16.

How to test
The most simple test of the frequency divider is to use the source clock on pin
one, and attach an oscilloscope to the outputs and measure their frequency.

IO

Input Output
0 clock (default f(1) input option) f(1)/2 - Frequency 1 divided in

half
1 f(1), 2 - second f(1) input option f(1)/4 - Frequency 1 divided in

quarters
2 f(2), 1 - default f(2) input

option
f(1)/8 - Frequency 1 divided in
eighths

3 f(2), 2 - second f(2) input option f(1)/16 - Frequency 1 divided
into sixteenths

4 f(1) select - selects which f(1)
input frequency to use

f(2)/2 - Frequency 2 divided in
half

5 f(2) select - selects which f(2)
input frequency to use

f(2)/4 - Frequency 2 divided in
quarters

6 none f(2)/8 - Frequency 2 divided in
eighths

7 none f(2)/16 - Frequency 2 divided
into sixteenths

7

https://github.com/skerr92/tinytapeout_frequency_div
https://wokwi.com/projects/341160201697624660

BCD to Decimal Decoder

Figure 3: picture

• Author JinGen Lim
• Description Converts a BCD input into a decimal output
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
Accepts BCD through 4 input pins, and outputs the decimal equivalent (output
pins 0 to 7). This is a functional clone of the DM7447, but does not include
values 8 and 9 due to package constraints.

How to test
Write to the BCD input (IN0:0, IN1:2, IN2:4, IN3:8). One corresponding deci-
mal output pin will be driven high.

IO

Input Output
0 input 1 (BCD 1) decimal output 0

8

https://github.com/jglim/tinytapeout_bcd-dec
https://wokwi.com/projects/341161378978988626
https://github.com/jglim/tinytapeout_bcd-dec/blob/main/README.md

Input Output
1 input 2 (BCD 2) decimal output 1
2 input 3 (BCD 4) decimal output 2
3 input 4 (BCD 8) decimal output 3
4 none decimal output 4
5 none decimal output 5
6 none decimal output 6
7 none decimal output 7

9

BCD to 7-Segment Decoder

Figure 4: picture

• Author JinGen Lim
• Description Converts a BCD input into a 7-segment display output
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
The IC accepts four binary-coded decimal input signals, and generates a corre-
sponding 7-segment output signal

How to test
Connect the segment outputs to a 7-segment display. Configure the input (IN0:0,
IN1:2, IN2:4, IN3:8). The input value will be shown on the 7-segment display

IO

Input Output
0 input 1 (BCD 1) segment a
1 input 2 (BCD 2) segment b

10

https://github.com/jglim/tinytapeout_bcd-7seg
https://wokwi.com/projects/341152580068442706
https://github.com/jglim/tinytapeout_bcd-7seg/blob/main/README.md

Input Output
2 input 3 (BCD 4) segment c
3 input 4 (BCD 8) segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

11

Barrel Shifter

Figure 5: picture

• Author Shahzaib Kashif
• Description shifts the data n times, where n is the input provided via

inputs
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
muxes connect to output

How to test
give input through input ports and toggle select pins to visualise shifting

IO

Input Output
0 input 1 output bit 1
1 input 2 output bit 2
2 input 3 output bit 3
3 input 4 output bit 4
4 shift type none

12

https://github.com/shahzaibk23/tinytapeout-barrel-shifter
https://wokwi.com/projects/341167691532337747
https://github.com/shahzaibk23/tinytapeout-barrel-shifter/blob/main/README.md

Input Output
5 select 1 none
6 select 2 none
7 hardcode 0 none

13

Pseudo-random number generator
• Author Thomas Böhm thomas.bohm@gmail.com
• Description Pseudo-random number generator using a 16-bit Fibonacci

linear-feedback shift register
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
16 flip flops are connected in a chain, and the output of some is XORed together
and fed back into the first flip flop. The outputs that are XORed together are
chosen in such a way as to give the longest possible cycle (2^16-1). All bits
being zero is a special case and is treated separately (all negative outputs of the
flip flops are ANDed together to generate a 1 as feedback). On each clock pulse
(pin 1) one new bit is generated. Setting load_en (pin 3) to HIGH allows the
loading of a user defined value through the data_in pin (pin2). On each clock
pulse one bit is read into the flip flop chain. When load_en (pin 3) is set to
LOW the computed feedback bit is fed back into the flip flops. The outputs of
the last 8 flip flops are connected to the output pins. For each clock pulse a
random bit is generated and the other 7 are shifted.

How to test
Set the switch for pin 1 so that the push button generates the clock. Press on
it and see the output change on the hex display. Using pin 2 and 3 a custom
value can be loaded into the flip flops.

IO

Input Output
0 clock random bit 0
1 data_in random bit 1
2 load_en random bit 2
3 none random bit 3
4 none random bit 4
5 none random bit 5
6 none random bit 6
7 none random bit 7

14

mailto:thomas.bohm@gmail.com
https://github.com/tcptomato/tinytapeout
https://wokwi.com/projects/341178154799333971
https://github.com/tcptomato/tinytapeout//blob/main/README.md

BCD to 7 Segment Decoder

Figure 6: picture

• Author Pramit Pal
• Description Setting the DIP switches as a BCD Value displays the BCD

Value 0-9 in the 7 segment display
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
Display BCD Value given by user with the 7 segment display

How to test
Turning on the last 4 input switches to display BCD Value

IO

Input Output
0 input 4 segment a
1 none segment b
2 none segment c
3 none segment d
4 input 3 segment e
5 input 2 segment f
6 input 1 segment g

15

https://github.com/pramitpal/tinytapeout_pramit
https://wokwi.com/projects/341162950004834900
https://github.com/pramitpal/tinytapeout_pramit/blob/main/README.md

Input Output
7 input 0 dot

16

Fibonacci & Gold Code
• Author Daniel Estevez
• Description This project includes two independent designs: a design that

calculates terms of the Fibonacci sequence and displays them in hex one
character at a time on a 7-segment display, and a Gold code generator
that generates the codes used by CCSDS X-band PN Delta-DOR.

• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware No external hardware is needed

How it works
The Fibonacci calculator uses 56-bit integers, so the terms of the Fibonacci
sequence are displayed using 7 hex characters. Since the TinyTapeout PCB only
has one 7-segment display, the terms of the Fibonacci sequence are displayed
one hex character at a time, in LSB order. The dot of the 7-segment display
lights up whenever the LSB is being displayed. On each clock cycle, 4-bits of
the next Fibonacci term are calculated using a 4-bit adder, and 4-bits of the
current term are displayed in the 7-segment display. The 7-segment display is
ANDed with the project clock, so that the digits flash on the display. The Gold
code generator computes a CCSDS X-band PN Delta-DOR Gold code one bit
at a time using LFSRs. The output bit is shown on the 7-segment display dot.
6-bits of the second LFSR can be loaded in parallel using 6 project inputs in
order to be able to generate different sequences. One of the project inputs is
used to select whether the 7-segment display dot is driven by the Fibonacci
calculator or by the Gold code generator.

How to test
The project can be tested by manually driving the clock using a push button
or switch. Just by de-asserting the reset and driving the clock, the digits of the
Fibonacci sequence terms should appear on the 7-segment display. The output
select input needs to be set to Gold code (high level) in order to test the gold
code generator. The load enable input (active-low), as well as the 6 inputs
corresponding to the load for the B register can be used to select the sequence
to generate. The load value can be set in the 6 load inputs, and then the load
enable should be pulsed to perform the load. This can be done with the clock
running or stopped, as the load enable is asynchronous. After the load enable
is de-asserted, for each clock cycle a new bit of the Gold code sequence should
appear in the 7-segment display dot.

IO

17

https://github.com/daniestevez/tinytapeout-verilog
https://wokwi.com/projects/341164910646919762

Input Output
0 clock {‘segment a’: ‘Fibonacci hex

digit’}
1 output select (high selects Gold

code; low selects Fibonacci LSB
marker) & Gold code load value
bit 0

{‘segment b’: ‘Fibonacci hex
digit’}

2 Fibonacci reset (active-low;
asynchronous) & Gold code
load value bit 1

{‘segment c’: ‘Fibonacci hex
digit’}

3 Gold code load enable
(active-low; asynchronous)

{‘segment d’: ‘Fibonacci hex
digit’}

4 Gold code load value bit 2 {‘segment e’: ‘Fibonacci hex
digit’}

5 Gold code load value bit 3 {‘segment f’: ‘Fibonacci hex
digit’}

6 Gold code load value bit 4 {‘segment g’: ‘Fibonacci hex
digit’}

7 Gold code load value bit 5 {‘none’: ‘Gold code output /
Fibonacci LSB digit marker’}

18

GPS C/A PRN Generator
• Author Adam Greig
• Description Generate any of the GPS C/A PRN sequences from PRN0 to

PRN31
• GitHub project
• Wokwi project
• Extra docs
• Clock 1000 Hz
• External hardware None

How it works
Instantiates the GPS G1 and G2 LFSRs to generate a pseudo-random sequence,
then selects the G2 output taps based on the input signals to output the chosen
sequence.

How to test
Apply clock to the in[0], pulse reset on in[1], choose a PRN between 0 and
31 using in[2:7], then the G1 sequence is emitted on out[0], the G2 sequence
on out[1], and the selected PRN on out[2]. The first 20 bits of PRN2 are
11100100001110000011.

IO

Input Output
0 clock G1 subsequence
1 reset G2 subsequence
2 prn[0] Selected PRN
3 prn[1] None
4 prn[2] None
5 prn[3] None
6 prn[4] None
7 none None

19

https://github.com/adamgreig/tinytapeout-prn
https://wokwi.com/projects/341342096033055316
https://github.com/adamgreig/tinytapeout-prn/

PDP-0: 4-bit CPU in the style of PDP-1/TX-0
• Author Tommy Thorn
• Description The tiny 4-bit CPU packs a 3b program counter, an accumu-

lator, and 8 6b words.
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware Besides interactining with the IOs, nothing is needed

How it works
The two top bits in each word form the opcode (load, store, add, branch-if-zero)
while the remaining four are the immediate field that the opcode uses. Load
and store only access the immediate field of the word. The IO implements a
simple command protocol to reset, load data, load code, and run. The output
are used for the PC and the Accumulator. The test bench shows how to load a
fibonacci computing program.

How to test
Use the command protocol to load programs and run them (see test bench)

IO

Input Output
0 clock acc[0]
1 cmd[0] acc[1]
2 cmd[1] acc[2]
3 not used acc[3]
4 cmdarg[0] pc[0]
5 cmdarg[1] pc[1]
6 cmdarg[2] pc[2]
7 cmdarg[3] Not used, wired to 0

20

https://github.com/tommythorn/tinytapeout-4-bit-cpu
https://wokwi.com/projects/341193419111006803

Game of Life - Cell Neighbor Count
• Author Uri Shaked (Wokwi)
• Description Logic to decide about the fate of a cell in the game of life: die,

stay alive, or spring to life
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware

How it works
The 8 inputs represent the current state of the neighboring cells (0 = dead, 1
= alive). The fate of the cell is in bits 2 and 3 of the output. The cell will be
alive if either bit 2 is on and it was alive in the previous generation, or if bit 3
is on. Otherwise, it’ll die.

How to test
Connect 8 DIP switches to the 8 input pins, and LEDs to bits 2 and 3 of the
output. Observe the value of the output bits: bit 2 should be on when either
two or three of the DIP switches are on, and bit 3 should be on when exactly
three DIP switches are on.

IO

Input Output
0 in0 none
1 in1 none
2 in2 2 or 3 inputs are high
3 in3 exactly 3 inputs are high
4 in4 none
5 in5 none
6 in6 none
7 in7 none

21

https://github.com/wokwi/tt-game-of-life-cell-popcnt
https://wokwi.com/projects/341266732010177108
https://github.com/wokwi/tt-game-of-life-cell-popcnt/blob/main/README.md

Traffic Light FSM
• Author Christian Fibich
• Description FSM controlling two (red-yellow-green) traffic lights
• GitHub project
• Wokwi project
• Extra docs
• Clock 2 Hz
• External hardware 2 red LEDs, 2 yellow LEDs, 2 green LEDs and current

limiting resistors

How it works
State machine that implements a typical Austrian traffic light: Red ->
Red+Yellow -> Green -> Green Blinking -> Yellow -> Red. Generated using
a hacked-together Verilog->Wokwi flow :D.

How to test
Starts in ‘error’ mode (yellow blinking). Switch SW1 (reset) to 1 and back to 0
to start operation. ‘error’ mode can be reached by toggling SW2.

IO

Input Output
0 clock red 1
1 reset yellow 1
2 enter_error_mode green 1
3 none red 2
4 none yellow 2
5 none green 2
6 none none
7 none none

22

https://github.com/cfib/trafficlight-fsm
https://wokwi.com/projects/341410909669818963

7 Segment Figure Eight

Figure 7: picture

• Author Christian Lyder Jacobsen
• Description
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware

How it works
How to test
IO

Input Output
0 clock segment a
1 reset segment b
2 speed lsb segment c
3 speed segment d
4 speed msb segment e
5 tail segment f
6 direction segment g
7 led invert none

23

https://github.com/clj/tinytapeout-verilog-7seg-figure-eight
https://wokwi.com/projects/341063825089364563
https://github.com/clj/tinytapeout-verilog-7seg-figure-eight/blob/main/README.md

Logic-2G57-2G58
• Author Sirawit Lappisatepun
• Description Replication of TI’s Little Logic 1G57 and 1G58 configurable

logic gates.
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware

How it works
This design replicates the circuit inside a TI configurable logic gates 74xx1G57
(and by including an inverted output, it will work as a 74xx1G58 as well). Since
there are still I/O pins left, I included two of these configurables, and also one
74xx1G79 D Flip-Flop (again, an inverted output means this will also work as
a 74xx1G80).

How to test
You could refer to TI’s 1G79/1G80/1G57/1G58 datasheet to test the device
according to the pinout listed below.

IO

Input Output
0 dff_clock dff_out
1 dff_data dff_out_bar
2 gate1_in0 gate1_out
3 gate1_in1 gate1_out_bar
4 gate1_in2 gate2_out
5 gate2_in0 gate2_out_bar
6 gate2_in1 none
7 gate2_in2 none

24

https://github.com/Sirawit7205/tinytapeout-2G57-2G58
https://wokwi.com/projects/341431339142087251

Logic-2G97-2G98
• Author Sirawit Lappisatepun
• Description Replication of TI’s Little Logic 1G97 and 1G98 configurable

logic gates.
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware

How it works
This design replicates the circuit inside a TI configurable logic gates 74xx1G97
(and by including an inverted output, it will work as a 74xx1G98 as well). Since
there are still I/O pins left, I included two of these configurables, and also one
74xx1G79 D Flip-Flop (again, an inverted output means this will also work as
a 74xx1G80).

How to test
You could refer to TI’s 1G79/1G80/1G97/1G98 datasheet to test the device
according to the pinout listed below.

IO

Input Output
0 dff_clock dff_out
1 dff_data dff_out_bar
2 gate1_in0 gate1_out
3 gate1_in1 gate1_out_bar
4 gate1_in2 gate2_out
5 gate2_in0 gate2_out_bar
6 gate2_in1 none
7 gate2_in2 none

25

https://github.com/Sirawit7205/tinytapeout-2G97-2G98
https://wokwi.com/projects/341432030163108435

RGB LED Matrix Driver
• Author Matt M
• Description Drives a simple animation on SparkFun’s RGB LED 8x8 ma-

trix backpack
• GitHub project
• Wokwi project
• Extra docs
• Clock 12500 Hz
• External hardware RGB LED matrix backpack from SparkFun:

https://www.sparkfun.com/products/retired/760

How it works
Implements an SPI master to drive an animation with overlapping green/blue
waves and a moving white diagonal. Some 7-segment wires are used for a ‘sanity
check’ animation.

How to test
Wire accordingly and use a clock up to 12.5 KHz. Asynchronous reset is syn-
chronized to the clock.

IO

Input Output
0 clock SCLK
1 reset MOSI
2 none segment c
3 none segment d
4 none segment e
5 none nCS
6 none segment g
7 none none (always high)

26

https://github.com/mm21/tinytapeout-led-matrix
https://wokwi.com/projects/0

Digital padlock

Figure 8: picture

• Author Jean THOMAS
• Description A 4-digit electronic padlock
• GitHub project
• Wokwi project
• Extra docs
• Clock 100 Hz
• External hardware

How it works
Each buttons press is detected by a rising edge detector, and each button press
is decoded into a binary code. That binary code is stored in a shift-register
which is continuously checked against a reference value (‘the padlock code’).

How to test
Connect a clock generator to the clock input, connect all four buttons with a
debounce circuit - the buttons should act as active high.

IO

Input Output
0 clock none
1 Button A none
2 Button B none
3 Button C none
4 Button D none
5 none none
6 none Button press detected
7 none Code valid

27

https://github.com/jeanthom/tinytapout-lock
https://wokwi.com/projects/341438392303616596
README.md

TinyIO
• Author Aidan Medcalf
• Description Tiny I/O expander with SPI interface
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware SPI driver

How it works
TinyIO takes 7 bits in as digital outputs, and sends 3 bits out from its digital
inputs.

How to test
7-bit SPI transaction. Supply nCE, SIN and SCK.

IO

Input Output
0 clock out0
1 reset out1
2 serial clock out2
3 chip enable out3
4 serial in out4
5 in0 out5
6 in1 out6
7 in2 serial out

28

https://github.com/AidanMedcalf/tinytapeout-tinyio
https://wokwi.com/projects/341432284947153491
https://github.com/AidanMedcalf/tinytapeout-tinyio/blob/main/README.md

4-bit-asychronous multiplier
• Author Hirosh Dabui
• Description Asychronous 4-bit multiplier that return 8-bit
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware 2x4-switches and 8 leds

How it works
2x4bit operands and 8bit result

How to test
Feed the 4-bit-operands and get the multiplication

IO

Input Output
0 input a0 output c[0]
1 input a1 output c[1]
2 input a2 output c[2]
3 input a0 output c[3]
4 input b1 output c[4]
5 input b2 output c[5]
6 input b3 output c[6]
7 input b3 output c[7]

29

https://github.com/splinedrive/tinytapeout-verilog-4x4-multiplier
https://wokwi.com/projects/341493393195532884
https://github.com/splinedrive/tinytapeout-verilog-4x4-multiplier/blob/main/README.md

Shiftregister 8 Bit

Figure 9: picture

• Author Thorsten Knoll
• Description A simple shiftregister with 8 bit depth, made from D-

FlipFlops. Programmable with data and clk, reset. All 8 bits will be
mapped to the output.

• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware A dipswitch and two button for the inputs. 8 LEDs

connected to the outputs.

How it works
Programm the shiftregister with the data (IN0) and clk (IN1) inputs. With
reset enabled, the FlipFlops will be cleared with the next risign edge on the clk.
The outputs (OUT0 - OUT7) are driven by the shiftregister bits.

How to test
Each rising edge at the clk input pushs a new data bit into the reǵister. Reset
happens with the next clk. See the complete state of the register at the 8
outputs.

IO

30

https://github.com/ThorKn/tinytapeout_shiftregister_8bit
https://wokwi.com/projects/341506274933867090

Input Output
0 clk out 0
1 data out 1
2 reset out 2
3 none out 3
4 none out 4
5 none out 5
6 none out 6
7 none out 7

31

Shiftregister Challenge 40 Bit

Figure 10: picture

• Author Thorsten Knoll
• Description The design is a 40 bit shiftregister with a hardcoded 40 bit

number. The challenge is to find the correct 40 bit to enable the output
to high. With all other numbers the output will be low.

• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware To test when knowing the correct 40 bit, only a dip-

switch (data), a button (clk) and a LED (output) is needed. Without
knowing the number it becomes the challenge and more hardware might
be required.

How it works
Shift a 40 bit number into the chip with the two inputs data (IN0) and clk (IN1).
If the shifted 40 bit match the hardcoded internal 40 bit, then and only then
the output will become high. Having only the mikrochip without the design
files, one might need reverse engineering and/or side channel attacks to fing the
correct 40 bit.

How to test
Get the correct 40 bit from the design and shift them into the shiftregister. Each
rising edge at the clk will push the next bit into the register. At the correct 40
bit, the output will enable high.

IO

32

https://github.com/ThorKn/tinytapeout_shiftregister_challenge
https://wokwi.com/projects/341516949939814994

Input Output
0 data output
1 clk none
2 none none
3 none none
4 none none
5 none none
6 none none
7 none none

33

Figure 8 pattern generator
• Author todd1251
• Description Generates a figure 8 pattern on the 7-segment display
• GitHub project
• Wokwi project
• Extra docs
• Clock 1 Hz
• External hardware

How it works
How to test
IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

34

https://github.com/todd1251/tinytapeout-figure8
https://wokwi.com/projects/341243232292700755

Picture Printer

Figure 11: picture

• Author Miron Zadora
• Description Outputs the Edinburgh Hacklab logo pixel by pixel
• GitHub project
• Wokwi project
• Extra docs
• Clock 1000 Hz
• External hardware Something to decode and display the image. E.g. An

arduino connected to the chip Clock and Pixel Output pins could be used
to display the 1s and 0s coming from the chip as ‘@’ and ‘.’ characters in
a serial console, putting a newline every 41 characters (41 is the width of
the image)

How it works
It outputs the image pixel by pixel, line by line, left to right, top to bottom. 1
pixel per clock cycle. Image is 41 by 41 pixels. 1 = black pixel, 0 = white pixel.

How to test
Supply a clock to 1st input and hold 2nd input high for one clock cycle to reset.
Everything in the design happens on the rising edge of the clock. Connect
external hardware described below.

IO

Input Output
0 Clock Pixel output
1 Synchronous reset none
2 none none
3 none none
4 none none
5 none none
6 none none
7 none none

35

https://github.com/ElectricPotato/tinytapeout-picture-printer-b
https://wokwi.com/projects/341542971476279892
https://github.com/ElectricPotato/tinytapeout-picture-printer-b/blob/main/README.md

4-bit ALU with 7 segment display decoder hex-
adecimal output

• Author Michael Gargano
• Description a 4-bit ALU with 8 different possible operations on an internal

accumulator whose current 4-bit state is displayed in hexadecimal on the
segmented display

• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
3-bit decoder picks operation pass-through, bit-wise (NOT, AND, OR, XOR),
two’s complement, add, or subtract circuit based on selection and stores the
result in a 4-bit accumulator, after the pressing the step button, the 4-bit to 7-
segment display decoder circuits then take that value and display it hexadecimal

How to test
select one of the 8 alu operations [switches 4-2] (pass-through 0, bit-wise NOT
1, bit-wise AND 2, bit-wise OR 3, bit-wise XOR 4, add 5, two’s compliment
6, subtract 7) then input a 4-bit number [switches 8-5], press step button to
perform the selected computation and the display will indicate current 4-bit
accumulator value in hex, dot indicates if a carry is output during addition or
subtraction

IO

Input Output
0 clock (or single step with step button) segment a of hex output
1 alu operation selection bit 2 segment b of hex output
2 alu operation selection bit 1 segment c of hex output
3 alu operation selection bit 0 segment d of hex output
4 input bit 3 segment e of hex output
5 input bit 2 segment f of hex output
6 input bit 1 segment g of hex output
7 input bit 0 dot (indicates carry)

36

https://github.com/mgargano/tinytapeout_alu_with_4bit_7segmetdisplay_decoder
https://wokwi.com/projects/341538994733974098

An optionally cumulative adder
• Author Michael Christen
• Description Increment with clock and add previous result or current A +

B
• GitHub project
• Wokwi project
• Extra docs
• Clock 1 Hz
• External hardware LEDs and switches would be handy

How it works
A, B are 3 bits, there’s a clock and a selctor to use A or (A + B)’

How to test
Toggle clock to run increment, swap between acumulating or just adding with
switch 2; 3-5 are A, 6-8 are B

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 none segment g
7 none none

37

https://github.com/michael-christen/wokwi-verilog-asic-experiment
https://wokwi.com/projects/341569483755749970
https://wokwi.com/projects/341569483755749970

7-segment LED flasher
• Author Joseph Chiu
• Description Drives 7-segment LED display, alternating between NIC and

JAC
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware Signals are assigned per the tinytapeout wokwi simu-

lator and intended to run on the project PCB

How it works
Master clock is fed through a prescaler with four tap-points which feeds a 4-bit
ripple counter (there are 6 total bits, but the top two bits are discarded). 2:1
muxes are chained to act like a 8:1 mux for each LED segment position. As the
counter runs, this results in each segment being turned on or off as needed to
render the display sequence (NIC JAC). The highest order bit is used to blink
the decimal point on/off.

How to test
IN5 and IN6 selects the clock prescaler. OUT0-OUT7 are the LED segment
outputs.

IO

Input Output
0 clock segment a
1 none segment b
2 none segment c
3 none segment d
4 none segment e
5 Prescale select bit 0 segment f
6 Prescale select bit 1 segment g
7 none segment dp

38

https://github.com/toybuilder/learn-tinytapeout
https://wokwi.com/projects/341490465660469844

tinytapeout-HELLo-3orLd-7seg

Figure 12: picture

• Author Rakesh Peter
• Description HELLo-3orLd Runner on 7 segment Display
• GitHub project
• Wokwi project
• Extra docs
• Clock 1 Hz
• External hardware none

How it works
BCD Counter with 7 seg Decoder

How to test
All toggle switches in zero position and clock switch on for auto runner. Indi-
vidual BCD bits can be toggled using corresponding inputs with clock switch
off.

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 dp toggle segment d
4 BCD bit 3 segment e
5 BCD bit 2 segment f
6 BCD bit 1 segment g
7 BCD bit 0 segment dp

39

https://github.com/r4d10n/tinytapeout-HELLo-3orLd-7seg
https://wokwi.com/projects/341609034095264340
https://github.com/r4d10n/tinytapeout-HELLo-3orLd-7seg/blob/main/README.md

Wolf sheep cabbage river crossing puzzle ASIC
design (����)

Figure 13: picture

• Author maehw
• Description Play the wolf, goat and cabbage puzzle interactively.
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware Input switches and 7-segment display

How it works
Truth table with the game logic (hidden easter egg). The inputs are the positions
of the farmer, wolf, goat and cabbage. The 7-segment display shows the status
of the game (won or lost).

How to test
Slide the input switches, think, have a look at the 7-segment display.

IO

40

https://github.com/maehw/wokwi-verilog-gds-wolf-goat-cabbage
https://wokwi.com/projects/341614346808328788
https://github.com/maehw/wokwi-verilog-gds-wolf-goat-cabbage/blob/main/README.md

Input Output
0 not connected because it is

typically used for clocked
designs and may be used in the
future of this design

output signal ~E, i.e. the top
and bottom segments light up,
when the game is over ��� due to
an unattended situation on any
river bank side

1 input signal F for the position
of the farmer (� �/�)

output signal ~R i.e. the
top-right and bottom-right
segments light up, to indicate
an unattended situation on the
right river bank (game over �)

2 input signal W for the position
of the wolf (�)

output signal ~R i.e. the
top-right and bottom-right
segments light up, to indicate
an unattended situation on the
right river bank (game over �)

3 input signal G for the position
of the goat (�)

output signal ~E, i.e. the top
and bottom segments light up,
when the game is over ��� due to
an unattended situation on any
river bank side

4 input signal C for the position
of the cabbage (�)

output signal ~L i.e. the top-left
and bottom-left segments light
up, to indicate an unattended
situation on the left river bank
(game over �)

5 here be dragons or an easter egg output signal ~L i.e. the top-left
and bottom-left segments light
up, to indicate an unattended
situation on the left river bank
(game over �)

6 unused here be dragons or an easter egg
7 unused output signal A to light up the

“dot LED” of the 7 segment
display as an indicator that all
objects have reached the right
bank of the river and the game
is won! ���

41

8x8 Bit Pattern Player

Figure 14: picture

• Author Thorsten Knoll
• Description 8x8 bit serial programmable, addressable and playable mem-

ory.
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware You could programm, address and play the 8x8 Bit

Pattern Player with a breadboard, two clock buttons and some dipswitches
on the input side. Add some LED to the output side. Just like the
WOKWI simulation.

How it works
The 8x8 memory is a 64-bit shiftregister, consisting of 64 serial chained D-
FlipFlops (data: IN0, clk_sr: IN1). 8 memoryslots of each 8 bit can be directly
addressed via addresslines (3 bit: IN2, IN3, IN4) or from a clockdriven player (3
bit counter, clk_pl: IN7). A mode selector line (mode: IN5) sets the operation
mode to addressing or to player. The 8 outputs are driven by the 8 bit of the
addressed memoryslot.

How to test
Programm the memory: Start by filling the 64 bit shiftregister via data and
clk_sr, each rising edge on clk_sr shifts a new data bit into the register. Select
mode: Set mode input for direct addressing or clockdriven player. Address mode:
Address a memoryslot via the three addresslines and watch the memoryslot
at the outputs. Player mode: Each rising edge at clk_pl enables the next
memoryslot to the outputs.

IO

42

https://github.com/ThorKn/tinytapeout_pattern_player
https://wokwi.com/projects/341620484740219475

Input Output
0 data bit 0
1 clk_sr bit 1
2 address_0 bit 2
3 address_1 bit 3
4 address_2 bit 4
5 mode bit 5
6 none bit 6
7 clk_pl bit 7

43

Figure of 8 orbit animation
• Author Rajarshi Roy
• Description Stepping using button will show a figure of 8 orbit animation

on 7 segment display
• GitHub project
• Wokwi project
• Extra docs
• Clock 0 Hz
• External hardware None

How it works
Signal goes through ring shift register, each flop in shift register is connected to
a segment in the display.

How to test
In button stepping mode, turn on switch 8 and press multiple times to fill figure
of 8 with signal from switch 7, then toggle switch 7, step once, turn off switch
8, then keep stepping to see the orbit animation.

IO

Input Output
0 clock segment a
1 none segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f
6 value of signal to enter into ring

shift register when switch 8 is
enabled

segment g

7 insert new signal from switch 7
into ring shift register

dot shows when switch 8 is
enabled

44

https://github.com/rajarshiroy/tinytapout0_rajarshi
https://wokwi.com/projects/341614536664547922
https://github.com/rajarshiroy/tinytapout0_rajarshi/blob/main/README.md

Low-speed UART transmitter with limited char-
acter set loading

Figure 15: picture

• Author maehw
• Description 300(?) baud UART transmitter (8N1) with limited character

set (0x40..0x5F; includes all capital letters in the ASCII table) loading.
• GitHub project
• Wokwi project
• Extra docs
• Clock 300 Hz
• External hardware UART receiver or oscilloscope or logic analyzer (op-

tional)

How it works
The heart of the design is a 13 bit shift register (built from D flip-flops). When
a word has been transmitted, it will be transmitted again and again until a new
word is loaded into the shift register or the output is disabled (the word will
keep on cycling internally).

How to test
Load a character into the design and attach a UART receiver (or oscilloscope
or logic analyzer) on the output side.

45

https://github.com/maehw/wokwi-verilog-gds-lowspeed-tiny-uart
https://wokwi.com/projects/341631511790879314
https://github.com/maehw/wokwi-verilog-gds-lowspeed-tiny-uart/blob/main/README.md

IO

Input Output
0 300 Hz input clock signal (or

different value supported by the
whole

UART (serial output pin, direct
throughput)

1 bit b0 (the least significant bit)
of the loaded and transmitted
character

UART (serial output pin, gated
by enable signal)

2 bit b1 of the loaded and
transmitted character

UART (serial output pin,
reverse polarity, direct
throughput)

3 bit b2 of the loaded and
transmitted character

UART (serial output pin,
reverse polarity, gated by enable
signal)

4 bit b3 of the loaded and
transmitted character

UART (MSBit, direct
throughput); typically set to 1
or can be used to sniffing the
word cycling through the shift
register)

5 bit b4 of the loaded and
transmitted character

UART (MSBit, reverse polarity,
direct throughput); same usage
as above

6 load word into shift register
from parallel input (IN1..IN5)
(1) or cycle the existing word
with start/stop bits around it
(0)

UART (MSBit, gated by enable
signal); typically set to 1 or can
be used to sniffing the word
cycling through the shift
register)

7 {‘output enable (for gated
output signals)’: ‘1 output is
enabled, 0 output is disabled
(permanently set to HIGH/1)’}

UART (MSBit, reverse polarity,
gated by enable signal); same
usage as above

46

LAB11

Figure 16: picture

• Author Thomas Zachariah
• Description Cycles through the characters of LAB11
• GitHub project
• Wokwi project
• Extra docs
• Clock 2 Hz
• External hardware None

How it works
Gates & flip-flops connected to the 7-segment display change the state of corre-
sponding LED segments to form the next character, each cycle

How to test
Set to desired clock speed – characters are most readable at the lowest speed

IO

Input Output
0 clock segment a
1 reset segment b
2 none segment c
3 none segment d
4 none segment e
5 none segment f

47

https://github.com/tzachari/tinytapeout-lab11
https://wokwi.com/projects/341631644820570706
https://github.com/tzachari/tinytapeout-lab11

Input Output
6 none segment g
7 none none

48

	M segments
	How it works
	How to test
	IO

	1-bit ALU
	How it works
	How to test
	IO

	Barrelshifter
	How it works
	How to test
	IO

	PDM driver
	How it works
	How to test
	IO

	2x 1 to 4 Frequency Divider
	How it works
	How to test
	IO

	BCD to Decimal Decoder
	How it works
	How to test
	IO

	BCD to 7-Segment Decoder
	How it works
	How to test
	IO

	Barrel Shifter
	How it works
	How to test
	IO

	Pseudo-random number generator
	How it works
	How to test
	IO

	BCD to 7 Segment Decoder
	How it works
	How to test
	IO

	Fibonacci & Gold Code
	How it works
	How to test
	IO

	GPS C/A PRN Generator
	How it works
	How to test
	IO

	PDP-0: 4-bit CPU in the style of PDP-1/TX-0
	How it works
	How to test
	IO

	Game of Life - Cell Neighbor Count
	How it works
	How to test
	IO

	Traffic Light FSM
	How it works
	How to test
	IO

	7 Segment Figure Eight
	How it works
	How to test
	IO

	Logic-2G57-2G58
	How it works
	How to test
	IO

	Logic-2G97-2G98
	How it works
	How to test
	IO

	RGB LED Matrix Driver
	How it works
	How to test
	IO

	Digital padlock
	How it works
	How to test
	IO

	TinyIO
	How it works
	How to test
	IO

	4-bit-asychronous multiplier
	How it works
	How to test
	IO

	Shiftregister 8 Bit
	How it works
	How to test
	IO

	Shiftregister Challenge 40 Bit
	How it works
	How to test
	IO

	Figure 8 pattern generator
	How it works
	How to test
	IO

	Picture Printer
	How it works
	How to test
	IO

	4-bit ALU with 7 segment display decoder hexadecimal output
	How it works
	How to test
	IO

	An optionally cumulative adder
	How it works
	How to test
	IO

	7-segment LED flasher
	How it works
	How to test
	IO

	tinytapeout-HELLo-3orLd-7seg
	How it works
	How to test
	IO

	Wolf sheep cabbage river crossing puzzle ASIC design (🐺🐐🥬🚣)
	How it works
	How to test
	IO

	8x8 Bit Pattern Player
	How it works
	How to test
	IO

	Figure of 8 orbit animation
	How it works
	How to test
	IO

	Low-speed UART transmitter with limited character set loading
	How it works
	How to test
	IO

	LAB11
	How it works
	How to test
	IO

